

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

Topological group criterion for *C(***X***)* in compact-open-like topologies, II

R. Ball^a, V. Gochev^{b,∗}, A. Hager^c, S. Zoble^c

^a *Department of Mathematics, University of Denver, Denver, CO 80208, USA*

^b *Department of Mathematics, Trinity College, Hartford, CT 06106, USA*

^c *Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA*

article info abstract

Article history: Received 10 November 2008 Received in revised form 17 January 2009 Accepted 5 February 2009

Dedicated to Neil Hindman, and to his work

MSC: primary 54C35, 54D20, 22A22, 03E50 secondary 54A10, 06F20, 18A20, 46A40

*Keywords: C(***X***)* Topological group Čech–Stone compactification Polish space Epi-topology Compact-zero topology Space with filter Continuum hypothesis

We continue from "part I" our address of the following situation. For a Tychonoff space **Y**, the "second epi-topology" *σ* is a certain topology on *C(***Y***)*, which has arisen from the theory of categorical epimorphisms in a category of lattice-ordered groups. The topology *σ* is always Hausdorff, and σ interacts with the point-wise addition $+$ on $C(Y)$ as: inversion is a homeomorphism and $+$ is separately continuous. When is $+$ jointly continuous, i.e. σ is a group topology? This is so if **Y** is Lindelöf and Cech-complete, and the converse generally fails. We show in the present paper: under the Continuum Hypothesis, for **Y** separable metrizable, if σ is a group topology, then **Y** is (Lindelöf and) Cech-complete, i.e. Polish. The proof consists in showing that if Y is not Cech-complete, then there is a family of compact sets in *β***Y** which is maximal in a certain sense.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is a sequel to [1], to which we refer for elaboration of the details of context and motivation. However, we shall set some notation and sketch the situation leading up to Definition 1.1.

For a Tychonoff space **Y**: The set *C(***Y***)* of continuous real-valued functions on **Y** is an abelian group under $(f+g)(y) = f(y) + g(y)$; the group identity is the function constantly zero. The Čech–Stone compactification is βY , and C denotes the collection of all cozero-sets of *β***^Y** which contain **^Y**. We shall reserve the symbol C for exactly this situation. For $f : Y \to Z$, with **Z** compact Hausdorff, $\beta f : \beta Y \to Z$ is the unique continuous extension. The map $C^*(Y) \ni f \to \beta f \in C(\beta Y)$ is a group isomorphism. We let $\mathcal{K}(Y) =: \{K \mid K \text{ is a compact subset of } Y\}$. For any family A of sets $A_{\delta} = \{ \bigcap \mathcal{A}' \mid \mathcal{A}'$ is countable subfamily of \mathcal{A} .

The following discussion synopsizes considerable information from [1] (and see also [2] and [7]).

A space with Lindelöf filter is a pair (X, \mathcal{F}) , where X is a compact Hausdorff space and \mathcal{F} is a filter base of dense cozero-sets in **X**. We write $(X, \mathcal{F}) \in |LSpFi|$. (Our favorite examples are the $(\beta Y, C)$ above.) Given such (X, \mathcal{F}) : Take $S \in \mathcal{F}_\delta$. The family of all

Corresponding author.

E-mail addresses: rball@du.edu (R. Ball), Vasil.Gochev@trincoll.edu (V. Gochev), ahager@wesleyan.edu (A. Hager), azoble@wesleyan.edu (S. Zoble).

^{0166-8641/\$ –} see front matter © 2009 Elsevier B.V. All rights reserved. [doi:10.1016/j.topol.2009.04.008](http://dx.doi.org/10.1016/j.topol.2009.04.008)

$$
U(K) =: \left\{ f \in C(\mathbf{X}) \mid f = 0 \text{ on } K \right\} \quad \left(K \in \mathcal{K}(\mathbf{S}) \right)
$$

is a basis of neighborhoods of 0 for a Hausdorff group topology σ_S on $C(\mathbf{X})$. We set

 $\sigma^{\mathcal{F}} =: \bigwedge \{ \sigma_S \mid S \in \mathcal{F}_\delta \}$ (meet in the lattice of topologies on $C(\mathbf{X})$).

This $\sigma^{\mathcal{F}}$ is T_1 , inversion $(f \to -f)$ is a homeomorphism, and + is separately continuous. The general question is: When is + jointly continuous? According to 2.5 of [1], this is so if and only if (X, \mathcal{F}) has "the *TGP*" in Definition 1.1 below.

Before getting to that, though, consider a Tychonoff space **Y**, and $(\beta Y, C) \in |LSpFi|$. We have the topology σ^C , as above. We also can topologize $C(Y)$ in a similar fashion: For $f \in C(Y) \subset C(Y, [-\infty, +\infty])$, consider the extension $\beta f \in C(Y)$ *C*(β **Y**, $[-\infty, +\infty]$). For $S \in C_\delta$, the family of all

$$
U'(K) =: \left\{ f \in C(\mathbf{Y}) \mid \beta f = 0 \text{ on } K \right\} \quad \left(K \in \mathcal{K}(\mathbf{S}) \right)
$$

is a basis of neighborhoods of 0 for a Hausdorff group topology, say t_S , on $C(Y)$, and then the topology of the Abstract is

 $\sigma =: \bigwedge \{ t_S \mid S \in C_\delta \}$ (meet in the lattice of topologies on $C(\mathbf{Y})$).

Then, via the isomorphism $C^*(Y) \cong C(\beta Y)$, the relative topology $\sigma/C^*(Y)$ becomes exactly the σ^C on $C(\beta Y)$. According to 5.5 of [1], σ is a group topology on $C(Y)$ if and only if σ^C is a group topology on $C(\beta Y)$.

Thus the question "When is $(C(Y), +, \sigma)$ a topological group?" has become a particular case of the question "For $(X, \mathcal{F}) \in$ **|LSpFi**|, when is $(C(X), +, \sigma^{\mathcal{F}})$ a topological group?", which, as we said, happens if and only if the *TGP* in the following obtains.

Definition 1.1. Let $(X, \mathcal{F}) \in |$ **LSpFi** $|$.

The family L of subsets of **X** is called adequate if $[\mathcal{L} \subset \mathcal{K}(\mathbf{X})]$ and $\mathcal{L} \cap \mathcal{K}(\mathbf{S}) \neq \emptyset$ $\forall \mathbf{S} \in \mathcal{F}_{\delta}$.

For adequate $\mathfrak{L},\mathfrak{M},\ \mathfrak{L}\stackrel{z}{\prec}\mathfrak{M}$ means: For each $M_1,M_2\in\mathfrak{M}$ and zero-sets $Z_i\supseteq M_i,$ there is an $L\in\mathfrak{L}$ with $L\subseteq Z_1\cap Z_2.$ ("Adequate" refers to the filter F . If necessary, we shall say " F -adequate".)

*(***X***, ⊬)* has the Topological Group Property *TGP* if [∀ adequate $\mathfrak{L} \exists$ adequate \mathfrak{M} with $\mathfrak{L} \stackrel{z}{\prec} \mathfrak{M}$]. Thus, *(***X***,* \mathcal{F} *)* fails the *TGP* if and only if there is adequate $\mathfrak L$ which is maximal with respect to $\stackrel{z}{\prec}$.

(The Hausdorff property deserves comment. For a general (X, \mathcal{F}) , the topology $\sigma^{\mathcal{F}}$ on $C(X)$ need not be Hausdorff: an example in 6.5 of [2] can be adapted easily. However, by 2.3 of [1], if $\bigcap \mathcal{F}$ is dense in **X**, then $\sigma^{\mathcal{F}}$ is Hausdorff. For the "favorite examples" (β **Y**, C), we have $\bigcap C = \nu$ **Y**, the Hewitt realcompactification of **Y** [8], so σ^C on $C(\beta$ **Y**) is Hausdorff, and it follows easily that the topology *σ* on *C(***Y***)* of the preceding paragraph is also Hausdorff. See [2], Section 6 for further discussion.)

We now summarize the results of our earlier attack [1] on the question [What are the **^Y** for which *(β***Y***,* C*)* has the *TGP*?].

Y is called Cech-complete if **Y** is G_δ in β **Y** [5]. It follows that **Y** is Lindelöf and Cech-complete if and only if **Y** ∈ C_δ . (The implication \Rightarrow uses [5], 3.12.25, and \Leftarrow uses [5], 3.8.F(b).) Let **D** be the discrete space of power ω_1 . Let λ **D** be **D** with one point adjoined, whose neighborhoods have countable complement; $λ$ **D** is a *P*-space, which is Lindelöf, not Čech-complete. Note that $(\beta Y, C) = (\beta vY, C)$ and $C(Y) \cong C(vY)$. (See [8].)

Theorems 1.2. *([1], 1.2, 1.3 and 1.4)*

(1) *If υ***^Y** *is Lindelöf and Cech-complete, then ^ˇ (β***Y***,* ^C*) has the TGP.*

(2) *(βλ***D***,* C*) has the TGP.*

(3) (β D, C) fails the TGP. Suppose Y is paracompact, locally compact, zero-dimensional. If (β Y, C) has the TGP then Y is Lindelöf.

Here (1) is elementary from the definition of $\sigma^{\mathcal{F}}$, (2) and (3) require considerable work, and seem to be ultimately set-theoretic.

*(*2*)* above says that the converse to *(*1*)* fails. In the theorem of this paper (Section 2), we show that this converse holds within the class of separable metrizable spaces, assuming the Continuum Hypothesis [CH].

Questions about Theorem 1.2 remain: Is *(*2*)* true replacing *λ***^D** by any Lindelöf *^P* -space? Is it true that [*(β***Y***,* C*)* has the *TGP* ⇒ *υ***Y** Lindelöf]?

2. The theorem

The theorem in the Abstract is equivalent, *via* the discussion in Section 1, to the following.

Theorem 2.1 ([CH]). Suppose **Y** is separable metrizable (thus Lindelöf). If (β **Y**, C) has the TGP, then **Y** is Čech-complete.

A difficulty in proving Theorem 2.1 is coping with the zero-sets of *^β***Y**, *Zi* [⊇] *Mi* in the definition of ^L *^z* ≺ M in Definition 1.1. This will be circumvented by (i) passing to a metrizable compactification **X** of separable metrizable **Y** (*via* Urysohn's Metrization procedure [5]), (ii) noting that in such **X**, every closed set is a zero-set, so that $\mathfrak{L} \stackrel{z}{\prec} \mathfrak{M}$ takes the simpler form $[\forall M_1, M_2 \in \mathfrak{M} \exists L \in \mathfrak{L} \ (L \subseteq M_1 \cap M_2)]$, and (iii) proving the following.

Lemma 2.2. Suppose X_1 and X_2 are compactifications of Y, C_i is the family of cozero-sets of X_i containing Y; so $(X_i, C_i) \in |LSpFi|$. Suppose there is continuous $X_1 \overset{\lambda}{\twoheadrightarrow} X_2$ extending the identity map on **Y** (i.e., $X_1 \geqslant X_2$ as compactifications). *Suppose* **Y** *is Lindelöf. If* (X_2, C_2) *fails the TGP, then so does* (X_1, C_1) *.*

Proof. Suppose $X_1 \stackrel{\lambda}{\rightarrow} X_2$ and C_i are as above (not yet assuming **Y** is Lindelöf). Note that $\lambda \lambda^{-1}(B) = B$ for any $B \subseteq X_2$, since λ is a surjection, and $\lambda(X_1 - Y) = X_2 - Y$, since λ extends the identity [8]. $\lambda(\mathfrak{A}_1) \equiv {\lambda(A) | A \in \mathfrak{A}_1}$ and $\lambda^{-1}(\mathfrak{A}_2) \equiv {\lambda^{-1}(A) | A \in \mathfrak{A}_2}$. Let " \mathfrak{L}_i is C_i -adequate", " $\mathfrak{L}_i \stackrel{z}{\prec} \mathfrak{M}_i(C_i)$ ", and " \mathfrak{L}_i is $\stackrel{z}{\prec}$ -maximal (C_i) " have the obvious meanings.

- (1) If $\mathcal{L}_1(\subseteq \mathcal{K}(\mathbf{X}_1))$ is \mathcal{C}_1 -adequate, then $\lambda(\mathcal{L}_1)$ is \mathcal{C}_2 -adequate.
- (2) If $\mathfrak{L}_1 \stackrel{z}{\prec} \mathfrak{M}_1(\mathcal{C}_1)$, then $\lambda(\mathfrak{L}_1) \stackrel{z}{\prec} \lambda(\mathfrak{M}_1)(\mathcal{C}_2)$.

The proofs of (1) and (2) are routine calculations. Note that (1) is needed for (2): $\frac{z}{\prec}$ is only defined for adequate families. Now assume **Y** is Lindelöf, then the following statements hold.

(3) $\forall S \in (\mathcal{C}_1)_{\delta} \exists T \in (\mathcal{C}_2)_{\delta}$ with $\lambda^{-1}(T) \subseteq S$.

(4) If $\mathcal{L}_2(\subseteq \mathcal{K}(\mathbf{X}_2))$ is \mathcal{C}_2 -adequate, then $\lambda^{-1}(\mathcal{L}_2)$ is \mathcal{C}_1 -adequate.

(5) If \mathfrak{L}_2 is $\stackrel{z}{\prec}$ -maximal *(C*₂), then $\lambda^{-1}(\mathfrak{L}_2)$ is $\stackrel{z}{\prec}$ -maximal *(C*₁).

The lemma follows from (5) . We prove (3) , (4) , and (5) .

Proof of (3). Let $S \in (C_1)_{\delta}$, so $S = \bigcap S_n$ for S_n 's cozero. $\lambda(\mathbf{X}_1 - S_n)$ is closed, disjoint from **Y**. By Smirnov's Theorem on "normal placement" ([5], 3.12.25), there is $T_n \in C_2$ with $\mathbf{Y} \subseteq T_n \subseteq \mathbf{X}_2 - \lambda(\mathbf{X}_1 - S_n)$. It follows that $\mathbf{Y} \subseteq \lambda^{-1}(T_n)$, so $T \equiv$ $\bigcap T_n \in (C_2)_{\delta}$ and $\lambda^{-1}(T) \subseteq S$.

Proof of (4). For $S \in (C_1)_{\delta}$, take T per (3). If \mathcal{L}_2 is C_2 -adequate, then there exists $L \in \mathcal{L}_2 \cap \mathcal{K}(T)$, so $\lambda^{-1}(L) \in \lambda^{-1}(\mathcal{L}_2) \cap$ $\mathcal{K}(\lambda^{-1}(T)) \subseteq \lambda^{-1}(\mathfrak{L}_2) \cap \mathcal{K}(S)$.

Proof of (5). Suppose \mathfrak{L}_2 is \prec -maximal *(C₂)*. By (4), $\lambda^{-1}(\mathfrak{L}_2)$ is \mathfrak{C}_1 -adequate, and we can address the question $[\exists \mathfrak{M}_1 \ (\lambda^{-1}(\mathfrak{L}_2) \stackrel{z}{\prec} \mathfrak{M}_1)$?]. If there were such \mathfrak{M}_1 , then $\mathfrak{L}_2 = \lambda \lambda^{-1}(\mathfrak{L}_2) \stackrel{z}{\prec} \lambda(\mathfrak{M}_1)$ by (2); so there is no such \mathfrak{M}_1 . \Box

For **^Y** separable metrizable: for any metrizable compactification **^X** of **^Y**, there is the *^β***^Y** *^λ* - **X** as in Lemma 2.2, and **Y** is Cech-complete if and only if **Y** is G_δ in **X** ([5], 3.9.1). So Lemma 2.2 and the following more general result prove Theorem 1.2.

Theorem 2.3 ([CH]). Let **X** be compact metrizable with dense subset **Y**. Let $\mathcal J$ stands for the family of all cozero (= open) sets in **X** *which contain* **Y***.*

If **Y** is not G_δ in **X**, then (X, J) fails the TGP: there is adequate \mathfrak{L}_0 which is \prec -maximal (= $\stackrel{z}{\prec}$ -maximal). That is, if (X, J) has the *TGP, then* **Y** *is Cech-complete. ˇ*

We require two simple lemmas. A regular closed set in a space is a subset which is the closure of its interior. *CND(***X***)* is the family of closed nowhere dense subsets of **X**.

Lemma 2.4. *Suppose* **X** *is a compactification of* **Y***. Then,* $\overline{X-Y}$ *is a regular closed set in* **X***.*

Proof. First, if *U* is open in **Y** with \overline{U} **Y** compact, then \overline{U} **Y** = \overline{U} **X**, and since **Y** is dense in **X**, *U* is open in **X**. Now consider the set of locally compact points

 $lc\mathbf{Y} = \{p \in \mathbf{Y} \mid \exists U \text{ open in } \mathbf{Y} \text{ with } p \in U, \overline{U}^{\mathbf{Y}} \text{ compact}\}.$

Then, kY is open in **X**, $kY \cap \overline{X} - \overline{Y} = \emptyset$, and $X = kY \cup \overline{X} - \overline{Y}$. This implies the result, since whenever (any) $X = G \cup F$, G open and *F* closed and $G \cap F = \emptyset$, then $int F = \mathbf{X} - \overline{G}$. \Box

Lemma 2.5. *Suppose* **X** *is any space, and T is closed in* **X***. The following are equivalent.*

(i) *T is regular closed in* **X***.*

- (ii) *If S is dense in* **X** (*or, dense open, or dense* G_{δ} *), then* $S \cap T$ *is dense in* T *.*
- (iii) *If* $E \in CND(X)$ *, then* $E \cap T \in CND(T)$ *.*

This proof is easy and omitted.

Proof of Theorem 2.3. Let G_δ (**X**, **Y**) be the set of all G_δ 's in **X** which contain **Y**, suppose **X** is compact metrizable, and **Y** is dense and not G_δ in **X**. Then $|\mathbf{X} - \mathbf{Y}| \ge \omega$ and $|G_\delta(\mathbf{X}, \mathbf{Y})|$ and $|CND(\mathbf{X})|$ are each $\ge 2^\omega$. But the G_δ 's and CND's are Borel sets, and there are only 2*^ω* Borel sets. (See [4], 8.5. This reference is to Baire sets. In a metrizable space, Baire = Borel.) Thus $|G_{\delta}(\mathbf{X}, \mathbf{Y})| = 2^{\omega} = |CND(\mathbf{X})|$.

Now take enumerations

 $G_{\delta}(\mathbf{X}, \mathbf{Y}) = \{S_{\alpha} \mid \alpha < 2^{\omega}\}\$ and $CND(\mathbf{X}) = \{E_{\alpha} \mid \alpha < 2^{\omega}\},$

and let $T = \overline{X - Y}$. By Lemma 2.4, *T* is regular closed.

Suppose Y is not G_{δ} in X. Then Y \cap T is not G_{δ} in X (since Y = (Y \cap T) \cup (X - T)), thus not G_{δ} in T (since a G_{δ} in a G_{δ} is a $G_δ$).

Let $\alpha < 2^{\omega}$. There are

$$
p_{\alpha} \in S_{\alpha} \cap T - \bigcup_{\beta < \alpha} (E_{\beta} \cap T)
$$
 and $q_{\alpha} \in S_{\alpha} \cap T - \mathbf{Y} \cap T$.

(There is p_{α} since: Each $E_{\beta} \cap T \in CND(T)$, by Lemma 2.5, so under [CH], their union is meagre in T. But $S_{\alpha} \cap T$ is G_{δ} in T. thus not meagre in *T* by the Baire Category Theorem. There is q_α since $S_\alpha \cap T \supseteq Y \cap T$ with the former dense G_δ in *T*, by Lemma 2.5, and the latter not G_δ in *T*.)

Let $\mathfrak{L}_0 = {\rho_{\alpha}, q_{\alpha}} \mid \alpha < 2^{\omega}$. This is evidently adequate, and we now show \mathfrak{L}_0 is \prec -maximal. Take countable F dense in $X - Y$, so $X - F \in G_{\delta}(X, Y)$ and there is $\gamma_1 < 2^{\omega}$ with $X - F = S_{\gamma_1}$. Suppose \mathfrak{M} is adequate.

(i) There is $M_1 \in \mathfrak{M}$ with $M_1 \subseteq S_{\gamma_1}$. Then, $M_1 \cap T \in CND(X)$. (If there is open nonvoid $U \subseteq M_1 \cap T$, then $U \subseteq T$ so $U \cap (\mathbf{X} - \mathbf{Y}) \neq \emptyset$, so $\emptyset \neq U \cap F \subseteq M_1 \subseteq S_{\gamma_1} = \mathbf{X} - F$. Contradiction.) So there is $\gamma_2 < 2^{\omega}$ with $M_1 \cap T = E_{\gamma_2}$. Consequently, for α *>* γ_2 , we have $p_\alpha \notin E_{\gamma_2}$, so $p_\alpha \notin M_1$ (since $p_\alpha \in T$).

(ii) Let $S = \bigcap_{\alpha \leq \gamma_2} (X - \{q_\alpha\})$. Under [CH], there is γ_3 with $S = S_{\gamma_3}$, and there is $M_2 \in \mathfrak{M}$ with $M_2 \subseteq S_{\gamma_3}$. Thus, for $\alpha \leq \gamma_2$, we have $q_{\alpha} \notin M_2$ (since $M_2 \subseteq S_{\gamma_3}$).

So, for every $\alpha < 2^{\omega}$, $\{p_{\alpha}, q_{\alpha}\}\nsubseteq M_1 \cap M_2$, and $\mathfrak{L}_0 \nprec \mathfrak{M}$. \Box

Remarks 2.6. In the proof of Theorem 2.3 above, the step "∃*p*_{*α*}" requires only the axiom [*p* = *c*], which is weaker than [CH]; see [6]. But the final step (ii) seems to need [CH].

We do not know if $[CH]$ is actually required for Theorem 2.3 (or for the assertion in Theorem 2.3 using simply $X = [0, 1]$, **, for example). (Note that** $\mathbb{Q} \cap [0, 1]$ **is not Čech-complete ([5], 3.9.B).)**

3. Some remarks

We comment on various aspects of the situation.

3.1. About Lemma 2.2

(a) First, if $X_1 \stackrel{\lambda}{\twoheadrightarrow} X_2$ is any continuous surjection, a group embedding $C(X_2) \stackrel{\widetilde{\lambda}}{\rightarrow} C(X_1)$ is defined by $\widetilde{\lambda}(f) = f \circ \lambda$. If λ is exactly as in Lemma 2.2, then $\lambda^{-1}(C_2) \subseteq C_1$ and $(C(\mathbf{X}_2), \sigma^{C_2}) \stackrel{\lambda}{\rightarrow} (C(\mathbf{X}_1), \sigma^{C_1})$ is a topological embedding. (The proof is much as the proof of Lemma 2.2 but requiring details about the σ^C 's). So if $(C(\mathbf{X}_2), +, \sigma^{C_2})$ is not a topological group, then neither is $(C(X_1), +, \sigma^{C_1})$. That is a "better version of Lemma 2.2" which we omit explaining fully since we have omitted all details about the $\sigma^{\mathcal{F}}$'s.

(b) The information in (a) has a natural generalization. Suppose $(\mathbf{X}_i, \mathcal{F}_i) \in |\textbf{LSPFi}|$ and $\mathbf{X}_1 \overset{\lambda}{\rightarrow} \mathbf{X}_2$ is continuous and $\lambda^{-1}(\mathcal{F}_2) \subseteq \mathcal{F}_1$. Then λ is a morphism of the category **SpFi** (by definition), and $(C(\mathbf{X}_2), \sigma^{\mathcal{F}_2}) \stackrel{\lambda}{\rightarrow} (C(\mathbf{X}_1), \sigma^{\mathcal{F}_1})$ is continuous (it can be shown). If further $[\forall S \in (\mathcal{F}_1)_\delta \exists T \in (\mathcal{F}_2)_\delta$ with $\lambda^{-1}(T) \subseteq S$ (exactly (3) in the proof of Lemma 2.2), then $\tilde{\lambda}$ is a topological embedding.

3.2. About Theorem 2.3

The proof of Theorem 2.3 actually proves the following. Suppose **X** is compact and **Y** is dense in **X**, that $|G_{\delta}(\mathbf{X}, \mathbf{Y})|$ = $2^{\omega} = |\text{CND}(X)|$, that $X - Y$ has a countable dense set, and that $\overline{X - Y}$ is G_{δ} in X. Then, if Y is not G_{δ} in X, then there is adequate L⁰ which is ≺-maximal. Here, "adequate", etc., are defined *mutatis mutandis*, with respect to the filter base of all dense open sets in **X** which contain **Y**.

The previous paragraph is speaking of **SpFi** – spaces with filters – not **LSpFi** – spaces with Lindelöf filter – and we lose contact with the motivation and the details about the topologies from [2] and [7]. So, while we do not know what the above means, we note that the theory of **SpFi** is, roughly, the theory of completely regular frames [3], and the latter has been much studied (e.g., [9]).

3.3. First epi-topology

Referring to the discussion in Section 1 about σ^C versus the "second epi-topology" *σ* on *C*(**Y**), there is a "first epitopology" from [2] τ on $C(Y)$, and its companion τ^C on $C(\beta Y)$, and for any $(X, \mathcal{F}) \in |E\hat{\mathbf{S}}P\hat{\mathbf{F}}|$, the more general $\tau^{\mathcal{F}}$ on $C(X)$. [1] deals with both $\sigma^{\mathcal{F}}$ and $\tau^{\mathcal{F}}$.

The analogue for $\tau^{\mathcal{F}}$ of the *TGP* is: for every adequate $\mathfrak L$ there is adequate $\mathfrak M$ with $\mathfrak L \stackrel{o}{\prec} \mathfrak M$, where $\stackrel{o}{\prec}$ means "in $\stackrel{z}{\prec}$ replace the zero sets by open sets". Then, Theorem 1.2 here is true also of $\tau^{\mathcal{F}}$. However, we do not know if Theorem 2.3 here is true using *^o* ≺.

3.4. Several questions

We collect some of the questions which we have not answered.

(1) *(β***Y***, C*) has the *TGP* $\frac{2}{\epsilon}$ *υ***Y** Lindelöf? Cf. Theorem 1.2(3).

(2) **Y** a Lindelöf *P*-space $\stackrel{?}{\Rightarrow}$ (β **Y**, C) has the *TGP*? Cf. Theorem 1.2(1).

(3) Assume the setting of Theorem 2.3. Then Theorem 2.3 can be put: $[CH] \Rightarrow \exists \mathfrak{L}_0 \prec$ -maximal. Does the converse hold? Or, ∃ \mathfrak{L}_0 <-maximal $\stackrel{?}{\Rightarrow}$ [CH], or Martin's Axiom, or [$p = c$]? Or, the same questions just using **X** = [0, 1] and **Y** = ℚ∩ [0, 1].

(4) Questions (1), (2), (3) using $\stackrel{o}{\prec}$ instead of $\stackrel{z}{\prec}$. See 3.3 above.

(5) Do Theorem 2.3 and Theorem 2.1 hold using $\stackrel{o}{\prec}$ instead of $\stackrel{z}{\prec}$?

Questions (4) and (5) reflect on the topologies $\tau^{\mathcal{F}}$, $\tau^{\mathcal{C}}$, τ mentioned in 3.3 above.

Acknowledgement

We are grateful to the referee for a very careful and thoughtful reading of the paper, and for numerous suggestions which have improved the paper.

References

- [1] R. Ball, V. Gochev, A. Hager, S. Todorčević, S. Zoble, Topological group criterion for $C(X)$ in compact-open-like topologies, I, Topology Appl. 156 (2009) 710–720.
- [2] R. Ball, A. Hager, Epi-topology and epi-convergence for archimedean lattice-ordered groups with weak unit, Appl. Categ. Structures 15 (2007) 81–107.
- [3] R. Ball, A. Hager, A. Molitor, Spaces with filters, in: C. Gilmour, B. Banaschewski, H. Herrlich (Eds.), Proc. Symp. Cat. Top., Univ. Cape Town, 1994, Dept. Math. and Appl. Math., Univ. Cape Town, 1999, pp. 21–36.
- [4] W. Comfort, S. Negrepontis, Continuous Pseudometrics, Lecture Notes, vol. 14, Dekker, 1975.
- [5] R. Engelking, General Topology, Heldermann, 1989.
- [6] D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984.
- [7] V. Gochev, Monomorphisms in spaces with Lindelöf filters via some compact-open-like topologies on *C(X)*, submitted for publication.
- [8] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960, reprinted as: Grad. Texts, vol. 43, Springer-Verlag, 1976.
- [9] P. Johnstone, Stone Spaces, Cambridge Univ. Press, 1982.