
Topology and its Applications 156 (2009) 2560–2564
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Topological group criterion for C(X) in compact-open-like topologies, II

R. Ball a, V. Gochev b,∗, A. Hager c, S. Zoble c

a Department of Mathematics, University of Denver, Denver, CO 80208, USA
b Department of Mathematics, Trinity College, Hartford, CT 06106, USA
c Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 November 2008
Received in revised form 17 January 2009
Accepted 5 February 2009

Dedicated to Neil Hindman, and to his work

MSC:
primary 54C35, 54D20, 22A22, 03E50
secondary 54A10, 06F20, 18A20, 46A40

Keywords:
C(X)

Topological group
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We continue from “part I” our address of the following situation. For a Tychonoff space Y,
the “second epi-topology” σ is a certain topology on C(Y), which has arisen from the
theory of categorical epimorphisms in a category of lattice-ordered groups. The topology σ
is always Hausdorff, and σ interacts with the point-wise addition + on C(Y) as: inversion
is a homeomorphism and + is separately continuous. When is + jointly continuous, i.e.
σ is a group topology? This is so if Y is Lindelöf and Čech-complete, and the converse
generally fails. We show in the present paper: under the Continuum Hypothesis, for Y
separable metrizable, if σ is a group topology, then Y is (Lindelöf and) Čech-complete, i.e.
Polish. The proof consists in showing that if Y is not Čech-complete, then there is a family
of compact sets in βY which is maximal in a certain sense.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is a sequel to [1], to which we refer for elaboration of the details of context and motivation. However, we
shall set some notation and sketch the situation leading up to Definition 1.1.

For a Tychonoff space Y: The set C(Y) of continuous real-valued functions on Y is an abelian group under
( f + g)(y) = f (y) + g(y); the group identity is the function constantly zero. The Čech–Stone compactification is βY,
and C denotes the collection of all cozero-sets of βY which contain Y. We shall reserve the symbol C for exactly
this situation. For f : Y → Z, with Z compact Hausdorff, β f : βY → Z is the unique continuous extension. The map
C∗(Y) � f → β f ∈ C(βY) is a group isomorphism. We let K(Y) =: {K | K is a compact subset of Y}. For any family A of
sets Aδ =: {⋂ A′ | A′ is countable subfamily of A}.

The following discussion synopsizes considerable information from [1] (and see also [2] and [7]).
A space with Lindelöf filter is a pair (X, F ), where X is a compact Hausdorff space and F is a filter base of dense

cozero-sets in X. We write (X, F ) ∈ |LSpFi|. (Our favorite examples are the (βY, C) above.) Given such (X, F ): Take S ∈ Fδ .
The family of all
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U (K ) =: { f ∈ C(X)
∣∣ f = 0 on K

} (
K ∈ K(S)

)

is a basis of neighborhoods of 0 for a Hausdorff group topology σS on C(X). We set

σ F =:
∧

{σS | S ∈ Fδ}
(
meet in the lattice of topologies on C(X)

)
.

This σ F is T1, inversion ( f → − f ) is a homeomorphism, and + is separately continuous. The general question is: When is
+ jointly continuous? According to 2.5 of [1], this is so if and only if (X, F ) has “the TGP” in Definition 1.1 below.

Before getting to that, though, consider a Tychonoff space Y, and (βY, C) ∈ |LSpFi|. We have the topology σ C , as
above. We also can topologize C(Y) in a similar fashion: For f ∈ C(Y) ⊂ C(Y, [−∞,+∞]), consider the extension β f ∈
C(βY, [−∞,+∞]). For S ∈ Cδ , the family of all

U ′(K ) =: { f ∈ C(Y)
∣∣ β f = 0 on K

} (
K ∈ K(S)

)

is a basis of neighborhoods of 0 for a Hausdorff group topology, say tS , on C(Y), and then the topology of the Abstract is

σ =:
∧

{tS | S ∈ Cδ}
(
meet in the lattice of topologies on C(Y)

)
.

Then, via the isomorphism C∗(Y) ∼= C(βY), the relative topology σ/C∗(Y) becomes exactly the σ C on C(βY). According
to 5.5 of [1], σ is a group topology on C(Y) if and only if σ C is a group topology on C(βY).

Thus the question “When is (C(Y),+, σ ) a topological group?” has become a particular case of the question “For (X, F ) ∈
|LSpFi|, when is (C(X),+, σ F ) a topological group?”, which, as we said, happens if and only if the TGP in the following
obtains.

Definition 1.1. Let (X, F ) ∈ |LSpFi|.
The family L of subsets of X is called adequate if [L ⊆ K(X) and L ∩ K(S) �= ∅ ∀S ∈ Fδ].
For adequate L,M, L

z≺ M means: For each M1, M2 ∈ M and zero-sets Zi ⊇ Mi , there is an L ∈ L with L ⊆ Z1 ∩ Z2.
(“Adequate” refers to the filter F . If necessary, we shall say “F -adequate”.)

(X, F ) has the Topological Group Property TGP if [∀ adequate L ∃ adequate M with L
z≺ M]. Thus, (X, F ) fails the TGP

if and only if there is adequate L which is maximal with respect to
z≺.

(The Hausdorff property deserves comment. For a general (X, F ), the topology σ F on C(X) need not be Hausdorff: an
example in 6.5 of [2] can be adapted easily. However, by 2.3 of [1], if

⋂
F is dense in X, then σ F is Hausdorff. For the

“favorite examples” (βY, C), we have
⋂

C = υY, the Hewitt realcompactification of Y [8], so σ C on C(βY) is Hausdorff, and
it follows easily that the topology σ on C(Y) of the preceding paragraph is also Hausdorff. See [2], Section 6 for further
discussion.)

We now summarize the results of our earlier attack [1] on the question [What are the Y for which (βY, C) has the TGP?].
Y is called Čech-complete if Y is Gδ in βY [5]. It follows that Y is Lindelöf and Čech-complete if and only if Y ∈ Cδ . (The

implication ⇒ uses [5], 3.12.25, and ⇐ uses [5], 3.8.F(b).) Let D be the discrete space of power ω1. Let λD be D with one
point adjoined, whose neighborhoods have countable complement; λD is a P -space, which is Lindelöf, not Čech-complete.
Note that (βY, C) = (βυY, C) and C(Y) ∼= C(υY). (See [8].)

Theorems 1.2. ([1], 1.2, 1.3 and 1.4)

(1) If υY is Lindelöf and Čech-complete, then (βY, C) has the TGP.
(2) (βλD, C) has the TGP.
(3) (βD, C) fails the TGP. Suppose Y is paracompact, locally compact, zero-dimensional. If (βY, C) has the TGP then Y is Lindelöf.

Here (1) is elementary from the definition of σ F , (2) and (3) require considerable work, and seem to be ultimately
set-theoretic.

(2) above says that the converse to (1) fails. In the theorem of this paper (Section 2), we show that this converse holds
within the class of separable metrizable spaces, assuming the Continuum Hypothesis [CH].

Questions about Theorem 1.2 remain: Is (2) true replacing λD by any Lindelöf P -space? Is it true that [(βY, C) has the
TGP ⇒ υY Lindelöf]?

2. The theorem

The theorem in the Abstract is equivalent, via the discussion in Section 1, to the following.

Theorem 2.1 ([CH]). Suppose Y is separable metrizable (thus Lindelöf ). If (βY, C) has the TGP, then Y is Čech-complete.
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A difficulty in proving Theorem 2.1 is coping with the zero-sets of βY, Zi ⊇ Mi in the definition of L
z≺ M in Defini-

tion 1.1. This will be circumvented by (i) passing to a metrizable compactification X of separable metrizable Y (via Urysohn’s

Metrization procedure [5]), (ii) noting that in such X, every closed set is a zero-set, so that L
z≺ M takes the simpler form

[∀M1, M2 ∈ M ∃L ∈ L (L ⊆ M1 ∩ M2)], and (iii) proving the following.

Lemma 2.2. Suppose X1 and X2 are compactifications of Y, Ci is the family of cozero-sets of Xi containing Y; so (Xi, Ci) ∈ |LSpFi|.
Suppose there is continuous X1

λ
� X2 extending the identity map on Y (i.e., X1 � X2 as compactifications).

Suppose Y is Lindelöf. If (X2, C2) fails the TGP, then so does (X1, C1).

Proof. Suppose X1
λ
� X2 and Ci are as above (not yet assuming Y is Lindelöf). Note that λλ−1(B) = B for any B ⊆ X2,

since λ is a surjection, and λ(X1 − Y) = X2 − Y, since λ extends the identity [8]. For Ai a family of subsets of Xi , let

λ(A1) ≡ {λ(A)|A ∈ A1} and λ−1(A2) ≡ {λ−1(A)|A ∈ A2}. Let “Li is Ci -adequate”, “Li
z≺ Mi(Ci)”, and “Li is

z≺-maximal (Ci)”
have the obvious meanings.

(1) If L1(⊆ K(X1)) is C1-adequate, then λ(L1) is C2-adequate.

(2) If L1
z≺ M1(C1), then λ(L1)

z≺ λ(M1)(C2).

The proofs of (1) and (2) are routine calculations. Note that (1) is needed for (2):
z≺ is only defined for adequate families.

Now assume Y is Lindelöf, then the following statements hold.

(3) ∀S ∈ (C1)δ ∃T ∈ (C2)δ with λ−1(T ) ⊆ S .
(4) If L2(⊆ K(X2)) is C2-adequate, then λ−1(L2) is C1-adequate.

(5) If L2 is
z≺-maximal (C2), then λ−1(L2) is

z≺-maximal (C1).

The lemma follows from (5). We prove (3), (4), and (5).

Proof of (3). Let S ∈ (C1)δ , so S = ⋂
Sn for Sn ’s cozero. λ(X1 − Sn) is closed, disjoint from Y. By Smirnov’s Theorem on

“normal placement” ([5], 3.12.25), there is Tn ∈ C2 with Y ⊆ Tn ⊆ X2 − λ(X1 − Sn). It follows that Y ⊆ λ−1(Tn), so T ≡⋂
Tn ∈ (C2)δ and λ−1(T ) ⊆ S .

Proof of (4). For S ∈ (C1)δ , take T per (3). If L2 is C2-adequate, then there exists L ∈ L2 ∩ K(T ), so λ−1(L) ∈ λ−1(L2) ∩
K(λ−1(T )) ⊆ λ−1(L2) ∩ K(S).

Proof of (5). Suppose L2 is
z≺-maximal (C2). By (4), λ−1(L2) is C1-adequate, and we can address the question

[∃M1 (λ−1(L2)
z≺ M1)?]. If there were such M1, then L2 = λλ−1(L2)

z≺ λ(M1) by (2); so there is no such M1. �
For Y separable metrizable: for any metrizable compactification X of Y, there is the βY

λ
� X as in Lemma 2.2, and Y is

Čech-complete if and only if Y is Gδ in X ([5], 3.9.1). So Lemma 2.2 and the following more general result prove Theorem 1.2.

Theorem 2.3 ([CH]). Let X be compact metrizable with dense subset Y. Let J stands for the family of all cozero (= open) sets in X
which contain Y.

If Y is not Gδ in X, then (X, J ) fails the TGP: there is adequate L0 which is ≺-maximal (= z≺-maximal). That is, if (X, J ) has the
TGP, then Y is Čech-complete.

We require two simple lemmas. A regular closed set in a space is a subset which is the closure of its interior. CND(X) is
the family of closed nowhere dense subsets of X.

Lemma 2.4. Suppose X is a compactification of Y. Then, X − Y is a regular closed set in X.

Proof. First, if U is open in Y with U Y compact, then U Y = U X , and since Y is dense in X, U is open in X. Now consider
the set of locally compact points

lc Y = {
p ∈ Y

∣∣ ∃U open in Y with p ∈ U , U Y compact
}
.

Then, lc Y is open in X, lc Y∩X − Y = ∅, and X = lc Y∪X − Y. This implies the result, since whenever (any) X = G ∪ F , G open
and F closed and G ∩ F = ∅, then int F = X − G . �
Lemma 2.5. Suppose X is any space, and T is closed in X. The following are equivalent.
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(i) T is regular closed in X.
(ii) If S is dense in X (or, dense open, or dense Gδ ), then S ∩ T is dense in T .

(iii) If E ∈ CND(X), then E ∩ T ∈ CND(T ).

This proof is easy and omitted.

Proof of Theorem 2.3. Let Gδ(X,Y) be the set of all Gδ ’s in X which contain Y, suppose X is compact metrizable, and Y is
dense and not Gδ in X. Then |X − Y| � ω and |Gδ(X,Y)| and |CND(X)| are each � 2ω . But the Gδ ’s and CND’s are Borel sets,
and there are only 2ω Borel sets. (See [4], 8.5. This reference is to Baire sets. In a metrizable space, Baire = Borel.) Thus
|Gδ(X,Y)| = 2ω = |CND(X)|.

Now take enumerations

Gδ(X,Y) = {
Sα

∣∣ α < 2ω
}

and CND(X) = {
Eα

∣∣ α < 2ω
}
,

and let T = X − Y. By Lemma 2.4, T is regular closed.
Suppose Y is not Gδ in X. Then Y ∩ T is not Gδ in X (since Y = (Y ∩ T ) ∪ (X − T )), thus not Gδ in T (since a Gδ in a Gδ

is a Gδ).
Let α < 2ω . There are

pα ∈ Sα ∩ T −
⋃
β<α

(Eβ ∩ T ) and qα ∈ Sα ∩ T − Y ∩ T .

(There is pα since: Each Eβ ∩ T ∈ CND(T ), by Lemma 2.5, so under [CH], their union is meagre in T . But Sα ∩ T is Gδ in T ,
thus not meagre in T by the Baire Category Theorem. There is qα since Sα ∩ T ⊇ Y ∩ T with the former dense Gδ in T , by
Lemma 2.5, and the latter not Gδ in T .)

Let L0 = {{pα,qα} | α < 2ω}. This is evidently adequate, and we now show L0 is ≺-maximal.
Take countable F dense in X − Y, so X − F ∈ Gδ(X,Y) and there is γ1 < 2ω with X − F = Sγ1 .
Suppose M is adequate.
(i) There is M1 ∈ M with M1 ⊆ Sγ1 . Then, M1 ∩ T ∈ CND(X). (If there is open nonvoid U ⊆ M1 ∩ T , then U ⊆ T so

U ∩ (X − Y) �= ∅, so ∅ �= U ∩ F ⊆ M1 ⊆ Sγ1 = X − F . Contradiction.) So there is γ2 < 2ω with M1 ∩ T = Eγ2 . Consequently, for
α > γ2, we have pα /∈ Eγ2 , so pα /∈ M1 (since pα ∈ T ).

(ii) Let S = ⋂
α<γ2

(X−{qα}). Under [CH], there is γ3 with S = Sγ3 , and there is M2 ∈ M with M2 ⊆ Sγ3 . Thus, for α � γ2,
we have qα /∈ M2 (since M2 ⊆ Sγ3 ).

So, for every α < 2ω , {pα,qα} � M1 ∩ M2, and L0 ⊀ M. �
Remarks 2.6. In the proof of Theorem 2.3 above, the step “∃pα” requires only the axiom [p = c], which is weaker than [CH];
see [6]. But the final step (ii) seems to need [CH].

We do not know if [CH] is actually required for Theorem 2.3 (or for the assertion in Theorem 2.3 using simply X = [0,1],
Y = Q ∩ [0,1], for example). (Note that Q ∩ [0,1] is not Čech-complete ([5], 3.9.B).)

3. Some remarks

We comment on various aspects of the situation.

3.1. About Lemma 2.2

(a) First, if X1
λ
� X2 is any continuous surjection, a group embedding C(X2)

λ̃→ C(X1) is defined by λ̃( f ) = f ◦ λ. If λ

is exactly as in Lemma 2.2, then λ−1(C2) ⊆ C1 and (C(X2),σ
C2 )

λ̃→ (C(X1),σ
C1 ) is a topological embedding. (The proof is

much as the proof of Lemma 2.2 but requiring details about the σ C ’s). So if (C(X2),+, σ C2 ) is not a topological group, then
neither is (C(X1),+, σ C1 ). That is a “better version of Lemma 2.2” which we omit explaining fully since we have omitted
all details about the σ F ’s.

(b) The information in (a) has a natural generalization. Suppose (Xi, Fi) ∈ |LSpFi| and X1
λ
� X2 is continuous and

λ−1(F2) ⊆ F1. Then λ is a morphism of the category SpFi (by definition), and (C(X2),σ
F2 )

λ̃→ (C(X1),σ
F1 ) is continu-

ous (it can be shown). If further [∀S ∈ (F1)δ ∃T ∈ (F2)δ with λ−1(T ) ⊆ S] (exactly (3) in the proof of Lemma 2.2), then λ̃ is
a topological embedding.

3.2. About Theorem 2.3

The proof of Theorem 2.3 actually proves the following. Suppose X is compact and Y is dense in X, that |Gδ(X,Y)| =
2ω = |CND(X)|, that X − Y has a countable dense set, and that X − Y is Gδ in X. Then, if Y is not Gδ in X, then there is
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adequate L0 which is ≺-maximal. Here, “adequate”, etc., are defined mutatis mutandis, with respect to the filter base of all
dense open sets in X which contain Y.

The previous paragraph is speaking of SpFi – spaces with filters – not LSpFi – spaces with Lindelöf filter – and we lose
contact with the motivation and the details about the topologies from [2] and [7]. So, while we do not know what the
above means, we note that the theory of SpFi is, roughly, the theory of completely regular frames [3], and the latter has
been much studied (e.g., [9]).

3.3. First epi-topology

Referring to the discussion in Section 1 about σ C versus the “second epi-topology” σ on C(Y), there is a “first epi-
topology” from [2] τ on C(Y), and its companion τ C on C(βY), and for any (X, F ) ∈ |LSpFi|, the more general τ F on C(X).
[1] deals with both σ F and τ F .

The analogue for τ F of the TGP is: for every adequate L there is adequate M with L
o≺ M, where

o≺ means “in
z≺,

replace the zero sets by open sets”. Then, Theorem 1.2 here is true also of τ F . However, we do not know if Theorem 2.3

here is true using
o≺.

3.4. Several questions

We collect some of the questions which we have not answered.

(1) (βY, C) has the TGP
?⇒ υY Lindelöf? Cf. Theorem 1.2(3).

(2) Y a Lindelöf P -space
?⇒ (βY, C) has the TGP? Cf. Theorem 1.2(1).

(3) Assume the setting of Theorem 2.3. Then Theorem 2.3 can be put: [CH] ⇒ ∃L0 ≺-maximal. Does the converse hold?

Or, ∃L0 ≺-maximal
?⇒ [CH], or Martin’s Axiom, or [p = c]? Or, the same questions just using X = [0,1] and Y = Q ∩ [0,1].

(4) Questions (1), (2), (3) using
o≺ instead of

z≺. See 3.3 above.

(5) Do Theorem 2.3 and Theorem 2.1 hold using
o≺ instead of

z≺?
Questions (4) and (5) reflect on the topologies τ F , τ C , τ mentioned in 3.3 above.
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