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BAIRE REFLECTION

STEVO TODORCEVIC AND STUART ZOBLE

Abstract. We study reflection principles involving nonmeager sets and the
Baire Property which are consequences of the generic supercompactness of ω2,
such as the principle asserting that any point countable Baire space has a
stationary set of closed subspaces of weight ω1 which are also Baire spaces.
These principles entail the analogous principles of stationary reflection but
are incompatible with forcing axioms. Assuming MM , there is a Baire metric
space in which a club of closed subspaces of weight ω1 are meager in themselves.
Unlike stronger forms of Game Reflection, these reflection principles do not
decide CH, though they do give ω2 as an upper bound for the size of the
continuum.

Introduction and basic theory

For a set A of ω-sequences of ordinals and a set of ordinals H the game G(A, H)
has two players who alternate playing ordinals from H. Player II wins if the
cooperative play belongs to A and loses otherwise. A weak version of the Game
Reflection Principle defined and studied in [9], which we denote GRPω(θ) for an
uncountable cardinal θ, asserts that for every A ⊂ θω, player II has a winning
strategy in G(A, θ) if and only if II has a winning strategy in G(A, H) for an ω1-
club of H ∈ [θ]ω1 . Here an ω1-club means the set of H closed under some function
f : θ<ω → θ.1 The weakened reflection principle obtained by requiring each player
to play finite sequences, rather than single ordinals (producing an element of θω by
concatenation of the plays), is immediately equivalent to the Weak Baire Reflection
Principle below.

Definition 0.1. BRPw(θ) asserts that any A ⊂ θω is meager if and only if A∩Hω

is meager in Hω for an ω1-club of H ∈ [θ]ω1 .

A stronger version requires reflection of a failure of the Baire Property.

Definition 0.2. BRP (θ) asserts that any A ⊂ θω has the Baire Property in θω if
and only if A ∩ Hω has the Baire Property in Hω for an ω1-club of H ∈ [θ]ω1 .

BRPw and BRP will denote the global versions of these principles. Before
deducing BRP from Game Reflection we discuss how to expand the scope of these
principles to spaces other than the Generalized Baire Spaces (spaces of the form
θω). Recall that the weight of a space X is the minimum cardinality of a base for
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6182 STEVO TODORCEVIC AND STUART ZOBLE

the topology of X. The point weight of a space X is defined to be the minimum
cardinal κ such that X has a base B which satisfies

|{b ∈ B | x ∈ b}| ≤ κ

for every x ∈ X. A point countable space is a space with point weight ω. For
a space X with base B and a point x ∈ X let Bx = {b ∈ B | x ∈ b}. For a set
B ⊆ B let XB = {x ∈ X | Bx ⊆ B}. Note that XB is always a closed subspace
of X. By an ω1-club of subspaces of X of weight ω1 we will mean a set of the
form {XB | B ∈ C} for some ω1-club C ⊂ [B]ω1 . We may thus speak of BRP (θ)
(BRPw(θ)) for any class of spaces: for any member space X with weight less than
or equal to θ and A ⊆ X, A has the Baire Property (is meager) in X if and only if
A ∩ Y has the Baire Property (is meager) in Y for an ω1-club of subspaces Y ⊆ X
of weight ω1. It is easy to see that any ω1-club of subspaces of λω contains a club
of the form {Y ω | Y ∈ C} for some ω1-club C ⊂ [λ]ω1 , so that Baire Reflection as
stated in Definitions 0.1 and 0.2 is equivalent to Baire Reflection for the class of
generalized Baire spaces.

Theorem 0.3. GRPω(θ) implies BRP (θ) for completely regular spaces of point
weight less than or equal to ω1.

Proof. Fix such a space X of weight θ. Let {Nα | α ∈ θ} enumerate such a base
B for the topology on X with no repetitions, and let A ⊆ X have the reflection
property as witnessed by a club C ⊂ [B]ω1 . A key point is that C can be refined
to a club C0 ⊂ C with the property that b ∩ XB �= ∅ for each b ∈ B ∈ C. Simply
take C0 to be the set of B ∩ H in C for an elementary submodel H ≺ H(κ) with
ω1∪{X,B} ⊂ H. We describe a game G(A∗, θ) that simulates the relevant Banach-
Mazur games with player II as the winner. A∗ is the set of sequences (αi) ∈ θω

such that
(1) Nαi+1 ⊆ Nαi

for every i ∈ ω and the containment is proper for every i
which is nonzero,

(2) if α0 is equal to α1, then
⋂

i<ω Nαi
∩ A = ∅,

(3) if α0 is not equal to α1, then
⋂

i<ω Nαi
⊆ A.

Now consider an H ∈ [B]ω1 in the club C0. H is a base for the subspace topology
on XH . Thus the relevant Banach-Mazur games for A∩XH are determined. These
strategies give rise to a winning strategy for II in the game G(A∗, H∗) in the obvious
way where H∗ is the set of α with Nα ∈ H. Thus II has a winning strategy in
G(A∗, θ) and this in turn gives rise to the Banach-Mazur strategies which show that
A has the Baire Property in X. �

For an infinite cardinal κ let ΓUB
κ denote the pointclass of κ-Universally Baire

sets of reals.

Corollary 0.4. GRPω(κ) implies ΓUB
ω1

= ΓUB
κ . If κ is a large enough cardinal (for

example a huge cardinal) and G ⊂ Col(ω1, < κ) is V -generic, then in V [G] every
set of reals in ΓUB

ω1
is determined.

Proof. Game Reflection and hence BRP holds in V [G] by Theorem 0.3 above and
Cor. 18 of [9]. The conclusion follows as Universally Baire sets of reals are deter-
mined in the presence of two Woodin cardinals (see [4]). �

We now show that ostensibly stronger versions of BRP and BRPw are equivalent
to the versions stated in Definitions 0.1 and 0.2. Recall that the cellularity of a space
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is the minimum cardinal λ such that any pairwise disjoint collection of nonempty
open sets has size less than λ. In a metric space, λ is the maximum cardinality
of such an antichain. This is because it suffices to consider families of basic open
sets, and metric spaces have σ-discrete bases by Stone’s Theorem (see [2]). Let us
call a space X a Baire space, or everywhere Baire, if the intersection of any family
{Dn | n ∈ ω} of dense open sets is dense. If there is a sequence of open dense sets
with empty intersection, then we say that X is meager in iteself.

Theorem 0.5. For any uncountable cardinal θ the principle BRPw(θ) is equivalent
to its version for metric spaces.

Proof. Assume BRPw(θ) and let M be a metric space of weight less than or equal
to θ. Let B be a σ-discrete base for M consisting of ε-balls. Suppose A ⊆ M has
the reflection property, that is, suppose there is an ω1-club C ⊂ [B]ω1 such that
A ∩ YB is meager in YB for any B ∈ C. Fix a maximal pairwise disjoint family U
of elements of B with the property that every U ∈ U is everywhere λU cellular for
some cardinal λU . By everywhere λU cellular we mean that the cellularity of every
nonempty open V ⊆ U is also λU . U can be obtained by collecting the minimal
elements of the well-founded relation on B \ {∅} defined by U < V if U ⊆ V and
c(U) < c(V ). Clearly the union of U is dense in M . It suffices to show that A ∩ U
is meager in U for every U ∈ U . If λU ≤ ω1, then there is B ∈ C which contains
{b ∈ B | b ∩ U �= ∅} so that U ⊆ XB. It follows that A ∩ U is meager in U in this
case. Thus we concentrate on U ∈ U with λU > ω1. Let BU denote the set of b ∈ B
such that b ⊆ U . Thus BU is a base for the subspace topology on U . Note that
BU has size λU . Let CU = {B ∩ BU | B ∈ C}. CU is an ω1-club in [BU ]ω1 . Let
U∗ be the metric completion of U . We show that there is a dense Gδ set G ⊆ U∗

and a homeomorphism π : G → λω
U . Let λU = λ. For a finite sequence s ∈ λ<ω

let lh(s) denote the length of s. For b ∈ BU let b∗ be the extension to U∗. The set
B∗

U = {b∗ | b ∈ BU} is a base for U∗. By induction there is a map φ : λ<ω → BU

such that φ(∅) = U and

(1) lh(s) = n implies φ(s) has radius less than 1
n ,

(2) s ⊂ t implies φ(t) ⊂ φ(s),
(3)

⋃
φ[λn] is dense in U ,

(4) s not equal to t implies clU∗(φ(s)∗) ∩ clU∗(φ(t)∗) is empty.

Thus G defined by

G =
⋃

f∈λω

⋂

n∈ω

φ(f � n)∗ =
⋂

n∈ω

⋃

s∈λn

φ(s)∗

is the desired Gδ with π−1(f) defined to be the unique element of
⋂

n∈ω φ(f � n).
The map π acts on elements of B∗

U and subsets of B∗
U . Let C∗

U = {B∗ | B ∈ C}
where B∗ = {b∗ | b ∈ B}. Thus C∗

U is a club in [B∗
U ]ω1 . Let C∗∗

U be the projection
of C∗

U on {φ(s)∗ | s ∈ λ<ω} = B∗∗
U . Thus π[C∗∗

U ] is club in [λ<ω]ω1 (identifying
basic open sets in λω with elements of λ<ω). For B ∈ CU we have

XU∗

B∗ ∩ U = XU
B ,

where the superscript indicates the parent space, so that A is meager in XU∗

B∗ . Thus

XU∗

B∗ ∩ G = XG
B∗∩B∗∗

U
.
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It follows that A ∩ G is meager in XG
B for any B ∈ C∗∗

U so that π[A ∩ G] is meager
in π[XG

B ] = Xλω

π[B]. BRPω(λ) holds as λ ≤ θ so π[A∩G] is meager in λω and hence
A ∩ G is meager in G. It follows that A is meager in U as desired. �

Theorem 0.6. For any uncountable cardinal θ, BRP (θ) is equivalent to its version
for complete metric spaces.

Proof. Assume M is complete metric and A ⊂ M . Again let B be a σ-discrete basis
for M consisting of ε-balls, and assume A ∩ YB has the Baire Property in YB for
all B in some club C ⊂ [B]ω1 . Let U ⊂ B be as in the theorem above. Again, it
suffices to show that A ∩ U has the Baire Property in U for U ∈ U with λU > ω1.
Since M is already complete, the construction of Theorem 0.5 gives a dense open
GU ⊂ U which is homeomorphic via a map π to λω

U and it suffices to show that
A ∩ GU has the Baire Property in GU . This is deduced by a similar argument as
in the theorem above, using π and our assumption that BRPw holds in λω

U . �

We do not know if BRPw for arbitrary point countable spaces is implied by
BRPw. We also do not know whether BRP for metric spaces or point countable
spaces is a stronger principle than BRP . We close this section by defining, in
analogy with simultaneous stationary reflection, the Simultaneous Weak Baire Re-
flection Principle, denoted BRPw

(2)(θ), to assert that pairs of second category sets
X, Y ⊂ θω reflect to second category sets in a stationary set of closed subspaces
Hω of weight ω1. It will be shown in the next section that BRPw

(2)(θ) implies, and
is strictly stronger than, BRP (θ). Again, nothing more is obtained by expanding
the scope of this principle to metric spaces. In analogy with diagonal reflection of
stationary sets we have the following principle BRPw

d (θ) which is yet stronger.

Theorem 0.7. Assume GRPω(θ). Suppose X is a completely regular Baire space
with a point countable basis. Then a stationary set of closed subspaces Y ⊂ X of
weight ω1 are also Baire spaces.

Proof. This is similar to Theorem 0.3 so we omit some detail. Let {Nα | α < θ}
enumerate a point countable basis B for X with no repetitions. Assume to the
contrary that there is a club C ⊂ [B]ω1 such that YB is not a Baire space for
B ∈ C. Thus there is a function f : C → θ such that Nf(B) ∈ B and YB ∩ Nf(B)

is meager in itself for every B ∈ C. It is easy to see that an equivalent version of
GRPω(θ) is obtained if player II always moves first. Let us assume this version and
define A ⊂ θω to be the set of sequences (αn) such that Nαn

is a decreasing chain
with empty intersection. For games associated to a B ∈ C, player II wins by using
f(B) as a first move and following the winning strategy for “empty” in the Banach-
Mazur game for YB∩Nf(B). Thus II wins the unrestricted game G(A, θ) with some
first move α, and it follows that Nα is meager in itself, which is a contradiction. �

The plan for the rest of the paper is as follows. In Section 2, a relationship with
stationary reflection is established and used to show that BRPw does not imply
BRP (ω2). Throughout, we will strengthen the usual formulation of principles of
stationary reflection to assert that reflection occurs stationarily often, where a sub-
set of [κ]ω1 is stationary if it meets every ω1-club. These stronger principles follow
from Game Reflection as well, though not necessarily from their usual versions (see
[3] for more on this issue). One nonstandard principle we use is the following.
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Definition 0.8. WRP c
(2)(κ) asserts that for any pair of stationary sets S, T ⊂ [κ]ω

whose union contains a club in [κ]ω, there is a stationary set of X ∈ [κ]ω1 such that
S ∩ [X]ω and T ∩ [X]ω are both stationary in [X]ω.

We will show that BRPw(κ) implies WRP (κ) and that BRP (κ) implies
WRP c

(2)(κ) by associating the space X(S) = {x ∈ κω | ran(x) ∈ S} to a sta-
tionary set S ⊆ [κ]ω. Further, we will show that BRP (κ) is equivalent to the
conjunction of WRP c

(2)(κ) and BRPw(κ). We use this connection to produce a
model in which BRPw holds but BRP (ω2) does not, namely the model obtained
by collapsing a supercompact cardinal to ω2 and then adding a pair of stationary
subsets of [ω2]ω which do not simultaneously reflect. In Section 2 we show that
BRP holds in the model obtained by the Mitchell collapse of a supercompact (see
[11]), which shows that BRP does not imply CH, in contrast to König’s theorem
that GRPω(ω2) does imply CH (Thm. 8 of [9]). In the last section of this paper
we show that Weak Baire Reflection fails under Martin’s Maximum in a variety of
ways. For example, assuming MM , we show that there is a Baire metric space of
weight ω2 which has an ω1-club of closed subspaces of weight ω1 which are meager
in themselves, and that any set of reals of size ω1 is ω1-Universally Baire but not
ω2-Universally Baire.

1. Relationship with stationary reflection

The principle WRP(2)(κ) asserts that pairs of stationary sets S, T ⊂ [κ]ω reflect
simultaneously in the sense that there is a stationary set of X ∈ [κ]ω1 such that
both S ∩ [X]ω and T ∩ [X]ω are stationary in [X]ω. WRP c

(2)(ω2) will only apply
to sets S, T whose union contains a club.2 WRPd(κ) asserts that for any sequence
{Sα | α < κ} of stationary subsets of [κ]ω there is a stationary set of H ∈ [κ]ω1

such that Sα ∩ [H]ω is stationary in Hω for every α ∈ H.

Theorem 1.1. The following implications hold for any uncountable cardinal κ.
(1) BRPw(κ) implies WRP (κ).
(2) BRP (κ) implies WRP c

(2)(κ).
(3) BRPw

(2)(κ) implies WRP(2)(κ).
(4) BRPw

d (κ) implies WRPd(κ).

Proof. For S ⊂ [κ]ω let X(S) ⊂ κω consist of all sequences x whose range belongs
to S. The key point is that X(S) is meager if and only if S is nonstationary. For
the reverse direction assume C is a club disjoint from S and let f : κ<ω → κ be
such that Cf ⊂ C. f gives rise to a winning strategy for II in the Banach-Mazur
game for κω \ X(S). II simply ensures closure of the range of the final play under
the function f . For the other direction, assume II wins the Banach-Mazur game.
Let C be the set of σ ∈ [κ]ω such that σ is the range of a play by this strategy.
Then C is a club disjoint from S. The preceding holds just as well in any Hω

with H uncountable and so the implication (1) follows. For (2) let S and T be
complimentary mod club and both stationary. Assume there is a club C ⊂ [κ]ω1

such that S, T do not reflect simultaneously at any H ∈ C. Let X(S) ⊂ κω be
the space associated to S and let H ∈ C be arbitrary. Since S ∩ [H]ω either

2Paul Larson and James Cummings independently pointed out to the second author that
WRP c

(2)(ω2) does not imply WRP(2)(ω2); see the remarks following 1.7. Note that nothing is

lost by requiring that S ∪ T = [κ]ω .
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contains a club of [H]ω or is disjoint from one, we conclude that X(S) ∩ Hω is
either meager or comeager in Hω and hence has the Baire Property in Hω. The
subspaces Hω for H ∈ C contain a club in our topological sense so we conclude
that X(S) has the Baire Property in κω by BRP (κ). If X(S) is comeager in some
neighborhood, then S contains a club, and if it is meager, then S is disjoint from
a club. In either case, we have a contradiction. (3) is proved similarly. For (4) let
S = {Sα | α < κ} be a sequence of stationary subsets of [κ]ω. For x ∈ κω let x̂ be
defined by x̂(n) = x(n + 1). Define the space X(S) to be the set of x ∈ κω such
that ran(x̂) ∈ Sx(0). Thus X(S) is a Baire space by previous remarks. A club of
H ∈ [κ]ω1 at which S does not reflect can be converted into a club of subspaces of
κω in which the trace of X(S) is not Baire, and so (4) follows. �

Theorem 1.2. The following are equivalent.

(1) BRPw(κ) + WRP c
(2)(ω2).

(2) BRP (κ).

Proof. Suppose A ⊆ κω is such that A ∩ Hω has the Baire Property in Hω for
an ω1-club C of H ∈ [κ]ω1 . For p ∈ κ<ω and σ ∈ [κ]ω let G∗∗

p (A, σ) denote
the Banach-Mazur game where I and II alternate playing elements of σ<ω which
properly extend each other. I plays first and must extend p, and if x ∈ σω is
the cooperative play, then II wins if and only if x ∈ A. For a fixed p ∈ κ<ω let
Sp

i denote the set of σ ∈ [κ]ω such that player i wins the Banach-Mazur game
G∗∗

p (A, σ), where i is either I or II. We first claim that Sp
I ∪ Sp

II contains a club
for any p ∈ κ<ω. Suppose S = [ω2]ω \ (Sp

I ∪Sp
II) is stationary. Then there is H ∈ C

such that S∩ [H]ω is stationary by WRP (κ). Since A∩Hω has the Baire Property
in Hω by assumption, there is a winning strategy τ in the game G∗∗

p (A, H) for one
of the players, without loss of generality player I, and hence for a club of σ ∈ [H]ω,
the restriction τ � σ<ω witnesses σ ∈ Sp

I giving the desired contradiction. We now
show that Sp

I and Sp
II cannot both be stationary. Assume otherwise. By WRP(2)(κ)

there is H ∈ C such that both Sp
I ∩Hω and Sp

II ∩Hω are stationary in Hω. Either
I or II wins G∗∗(A, H) via a strategy τ . Any σ closed under τ in the wrong set
gives a contradiction. It now follows that for p ∈ κ<ω either II wins G∗∗

p (A, σ) for
a club of σ or there is p ⊂ q such that II wins G∗∗

q (¬A, σ) for a club of σ. To see
this, fix p and suppose II fails to win G∗∗

p (A, σ) for all σ in a stationary set S. By
intersecting with a club and pressing down we find q so that II wins G∗∗

q (¬A, σ)
for all σ in some stationary S̄ ⊆ S. If this set does not contain a club, then by
repeating the previous argument we get an r extending q such that Sr

I and Sr
II are

both stationary, contradicting the last claim. It now follows that A has the Baire
Property. Suppose II wins G∗∗

p (A, σ) on a club. Then II wins G∗∗
p (A, H) for an

ω1-club and so by BRPw(κ), II must win G∗∗(A, κ). �

As a corollary to Theorem 1.1, and the fact that WRP (ω2) is equiconsistent
with the existence of a weakly compact cardinal, we see that both BRPw(ω2) and
BRP (ω2) are as well. The global principle BRPw is much stronger as it implies
the global failure of �κ (see [13]). We now separate BRPw from BRP (ω2) using
this connection with stationary reflection. The reader is referred to [10] for similar
results in the context of MM .
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Definition 1.3. P consists of triples (p, e, δ) such that

(1) δ < ω2.
(2) e : δ + 1 × ω1 → [ω2]ω.
(3) (e(γ, ξ) | ξ < ω1) is continuous and exhaustive in [γ]ω for each γ ≤ δ.
(4) If cf(γ) = ω, then e(γ, ξ) is cofinal in γ for each ξ < ω1.
(5) p : ran(e) → 2.
(6) For each γ ≤ δ the set of σ ∈ ran(e) such that p(σ) = 0 either contains or

is disjoint from a club in [γ]ω.

The ordering is reverse inclusion on each coordinate. Note that clause (4) of the
definition ensures that P is σ-closed.

Lemma 1.4. P is (ω1,∞)-distributive.

Proof. We show that II wins the game where I and II alternate playing a decreas-
ing sequence of conditions (pα, eα, δα) for α < ω1 with II playing on the set of even
stages E including limits. At the end, II must produce a p below every member
of the sequence to win. From the existence of a winning strategy for II one easily
deduces that P is (ω1,∞) distributive (assuming I plays first). Fix i < 2. Note that
II has complete control over eγ at limit stages by clause (4). II wins by extending
arbitrarily at successor stages, and at limits α setting

pα(eα(δα, ξ)) = i

for every ξ < ω1 and, via some simple bookkeeping, choosing the sequence
(eα(δα, ξ) | ξ < ω1) so that

{eα(δα, 0) | α ∈ E}
is continuous and exhaustive in [δ]ω where δ is the limit of the δα. �

Lemma 1.5. Let G ⊂ P be V -generic. Suppose WRP (ω2) holds in V [G]. Then
WRP c

(2)(ω2) fails in V [G].

Proof. The generic filter gives rise to S0, S1 ⊂ [ω1]ω defined by

Si =
⋃

{p−1(i) | ∃e, δ (p, e, δ) ∈ G}

for i < 2 and a set
e =

⋃
{ran(e) | ∃p, δ (p, e, δ) ∈ G}.

A density argument shows that both S0 and S1 are stationary and that their
union is equal to e. By design they do not simultaneously reflect. e contains a club
in [ω2]ω by WRP (ω2), so the sets S0, S1 witness the failure of WRP c

(2)(ω2) in V [G]
as desired. �

The following basic result on extending embeddings to generic extensions is at-
tributed to Silver (see [1] or Lemma 1 of [9]).

Lemma 1.6. Suppose M and N are inner models, k : M → N is elementary and
P ∈ M . Suppose P is M -generic and H ⊂ k(P) is N-generic. Suppose k[G] ⊂ H.
Then there is a unique extension k∗ : M [G] → N [H] of k with k(G) = H.

Theorem 1.7. BRPw does not imply BRP (ω2).
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Proof. Let κ be supercompact and G ⊂ Col(ω1, < κ) be V -generic. Let S0, S1 be
V [G]-generic subsets of [ω2]ω which do not simultaneously reflect as given by the
poset P described above. If we can show that BRPw(ω2) holds in V [G][S0, S1],
then BRP (ω2) must fail in this model by Theorem 1.1 and Lemma 1.5. In fact
BRPw(θ) holds for every θ, but for simplicity let us take θ = ω2. Let A ⊂ ωω

2 have
the property that A ∩ [H]ω is meager in Hω for all H in some club K ⊆ [ω2]ω1 .
Suppose toward a contradiction that A is of second category in ωω

2 . Then one of
the sets

A0 = {x ∈ A | ran(x) ∈ S0}
or

A1 = {x ∈ A | ran(x) ∈ S1},
say A0, is of second category. Let Q be the poset which shoots a club through
S0 with conditions of size ω1. More specifically let p and e be the objects given
by the generic P and let D denote the set of δ < ω2 such that p(e(δ, ξ)) = 0 for
every ξ < ω1. Let Q be the poset of all continuous successor length sequences
from D of size ω1 ordered by reverse inclusion. If C is V [G][S0, S1]-generic for Q,
then C gives rise to a club subset of S0. The idea is that the nonmeagerness of
A0 will be preserved in V [G][S0, S1][C] where some generic supercompactness is
recovered. Let (p, q̇) be a condition in Col(ω1, < κ) ∗ P and Ȧ a term such that
(p, q̇) forces that Ȧ is such a set as witnessed by K̇ and that Ȧ0 is nonmeager. Let
G∗ ⊂ Col(ω1, < j(κ)) be V -generic with p ∈ G∗ and let G = G∗ ∩ Col(ω1, < κ).
We thus have an embedding j : V [G] → M [G∗]. In V [G∗] the poset P ∗ Q has size
ω1. Let q = q̇G ∈ P. Build a condition ((S0, S1), C) in P∗Q which has a supremum
in j(P ∗ Q) and which meets every dense set in V [G]. Now let (S∗

0 , S∗
1 , C∗) be

M [G∗]-generic for j(P ∗ Q) below this condition. By Lemma 1.6 above there is a
unique extension

j∗ : V [G][S0, S1][C] → M [G∗][S∗
0 , S∗

1 ][C∗].

Now we do the usual type of reflection and preservation argument. A0 is non-
meager in V [G][S0, S1][C]. The factor

j(P ∗ Q)/(S0, S1) ∗ C

is σ-closed and hence j∗[A] ⊂ j[κ]ω is nonmeager in the space j[κ]ω in the model
V [G∗][S∗

0 , S∗
1 ][C∗] and hence in M [G∗][S∗

0 , S∗
1 ][C∗]. It follows that the model

M [G∗][S∗
0 , S∗

1 ][C∗] satisfies the sentence asserting the existence of H ∈ [j(κ)]ω1

with j∗(A)∩Hω nonmeager in Hω. By elementarity, V [G][S0, S1][C] contains such
an H. Thus H ∈ V [G][S0, S1] as Q does not add new sets of size ω1, and H must
have the property there as well giving the desired contradiction. �

Paul Larson noted that the above model can be modified so that WRP(2)(ω2)
fails but WRP c

(2)(ω2) holds. Modify the poset P so that disjoint stationary sets
(S0, S1, S2) are added whose union is [ω2]ω and such that S1 and S2 do not simul-
taneously reflect. Suppose A and B are complimentary stationary sets. If A and
B both have stationary intersection with some Si, then design Q to shoot a club
through Si and use the reflection argument above. Otherwise say A almost contains
S0 and B almost contains S1. Then A and B necessarily reflect simultaneously.
Returning to Baire Reflection, we can deduce some corollaries. As a consequence
of Theorem 1.2, BRPw

(2)(ω2) implies WRP(2)(ω2) and hence BRP (ω2), and in the
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model just described, BRP (ω2) holds. Thus BRP (θ) does not imply WRP(2)(θ)
and hence does not imply BRPw

(2)(θ).

2. Baire Reflection does not imply CH

König shows in [9] that GRPω(ω2) implies CH. In this section we show that
Baire Reflection is consistent with 2ω = ω2. Let Cκ be the poset for adding κ many
Cohen reals. Conditions are finite partial functions from κ × ω to 2 ordered by
reverse inclusion.

Lemma 2.1. Let κ and δ be arbitrary and suppose G ⊂ Cκ is V -generic. Suppose
A ⊂ δω is nonmeager. Then A remains nonmeager in V [G].

Proof. Suppose (τn | n < ω) is a sequence of nowhere dense sets such that

A ⊆
⋃

n<ω

τn
G

in V [G] for any G ⊂ Cκ which is V -generic. We define a Banach-Mazur strategy
for player II in V as follows. Let θ be large enough and for a ∈ H(θ) let Ma be
the skolem closure of a inside H(θ) together with a well-ordering of H(θ). We will
always add the sequence (τn) and P. Fix a bijection n → (n0, n1) from ω to ω ×ω.
Given a sequence {s0, s1, ..., sn} with each si ∈ δ<ω and si ⊆ si+1 for each i, let
p be the nst

1 member of M{s0,...,sn0} ∩ P and select q extending p and s extending
sn so that q forces that [s] is disjoint from τ i for each i ≤ n, where [s] is the basic
open neighborhood of δω determined by s. Set sn+1 = s. Since II cannot win the
Banach-Mazur game for the compliment of A by this strategy there is a play

x =
⋃

{sn | n ∈ ω}
according to it which belongs to A. Let M be the skolem hull of the set of moves
of this strategy, and Mn the hull of the first n moves. Thus M =

⋃
n<ω Mn. There

is an r ∈ P such that r forces that x ∈ τm for some m. Let p be the restriction
of r to M , and let k be big enough so that k0 = m and p is the kst

1 member of
M{s0,...,sm}. Then some extension of p forces that [sm+1] is disjoint from τm and
hence that x /∈ τm. Such a condition can be found in M{s0,...,sm+1} so that it is
compatible with r. This is a contradiction as x ∈ [sm+1]. �

We now briefly exposit (an equivalent version of) the model of [11]. For a set
I let CI denote the poset for adding I many Cohen reals. Let σ̇I denote the CI

name for the set of all countable partial maps from I to 2. We work only with full
names, that is, we assume that τ ∈ σ̇I is forced by ∅ to be such a function. Let
E be the set of even ordinals and O the set of odd ordinals. For an ordinal κ let
Eκ = E ∩ κ and Oκ = O ∩ κ.

Definition 2.2. Mκ is the collection of all countable partial maps p such that
(1) α ∈ Eκ ∩ dom(p) implies p(α) ∈ 2<ω,
(2) α ∈ Oκ ∩ dom(p) implies p(α) ∈ σ̇E∩α,
(3) {α ∈ dom(p) ∩ Eκ | p(α) is nonempty} is finite.

Mκ is ordered by setting p ≤ q if
(1) dom(q) ⊆ dom(p),
(2) α ∈ dom(q) ∩ Eκ implies q(α) ⊆ p(α),
(3) α ∈ dom(q) ∩ Oκ imples p � Eα �CE∩α

q(α) ⊆ p(α).
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Note the abuse of notation in (3). We are regarding p � I as an element of CI

for I ⊂ Eκ. The following lemma shows that preservation arguments in the context
of the Mitchell collapse require only preservation under CEκ

and under σ-closed
forcing.

Lemma 2.3. There is a σ-closed poset Pκ and a map π : CEκ
× Pκ → Mκ such

that whenever G ⊂ CEκ
× Pκ is V -generic, then π[G] is V -generic for Mκ.

Proof. Pκ is the set of p ∈ Mκ which vanishes on even coordinates, that is, such
that dom(p) ∩ Eκ is empty, with the ordering inherited from Mκ. Clearly Pκ is
σ-closed. Define

π : CEκ
× Pκ → Mκ

by π(a, p) = a∪ p. Suppose D ⊂ Mκ is open and dense. Let (a, p) ∈ CEκ
×Pκ. Fix

a maximal antichain of b ∈ CEκ
below a such that there is qb ∈ Pκ with b ∪ qb ∈ D

and b ∪ qb ≤ a ∪ p. The conditions qb can be amalgamated (along with p) into a
condition q such that each b ∪ q ∈ D and q ≤ p in Pκ. �

Theorem 2.4. Suppose κ is supercompact and G ⊂ Mκ is V -generic. Then BRP
holds in V [G] but CH fails.

Proof. See [10] for a proof that 2ω = ω2 in V [G]. Fix λ and let j : V → M be an
embedding with critical point κ such that Mθ ⊂ M for some large enough θ relative
to λ. Let Gj(κ) ⊂ Mj(κ) be V -generic and Gκ = Gj(κ) ∩ Mκ. Thus j extends to

j : V [Gκ] → M [Gj(κ)]

in V [Gj(κ)]. Since WRP(2)(ω2) holds in V [Gκ] it suffices, by Theorem 1.2, to show
that BRPw(λ) holds for any λ. So suppose A ∈ V [Gκ] and A ⊂ λω is not meager
in λω. We may assume that A is dense. Clearly j[A] = j(A) ∩ j[λ]ω. Thus, if
we can show that j[A] is nonmeager in j[λ]ω in the model M [Gj(κ)], then j[λ] is
the desired element of [j(λ)]ω1 and the result follows by reflection and the fact
that j[λ] is closed under j(f) for any f : λ<ω → λ in V [Gκ]. Since j itself is a
homeomorphism from λω to j[λ]ω which sends A to j[A], M [Gj(κ)] ⊂ V [Gj(κ)], and
j � λω ∈ V [Gj(κ)], it suffices to show that A is nonmeager in V [Gj(κ)]. The key
point is that V [Gj(κ)] is contained in an extension by a product of CEj(κ) and a
σ-closed poset by Lemma 2.3. It is easy to see that the latter forcing preserves
nonmeagerness, and the former is handled by Lemma 2.1. Thus A is nonmeager in
an outer model of V [Gj(κ)] and hence in V [Gj(κ)] as desired. �

As a final note, BRP does not imply 2ω1 = ω2. The same is true of any conse-
quence of GRP .

3. Failures of Baire Reflection

Theorem 3.1. Assume MM . Then every set of reals A of size ω1 is ω1-Universally
Baire but not ω2-Universally Baire.

Proof. Suppose A is a set of reals of size ω1. Let f : ωω
1 → ωω be continuous. Let

O be the union of the set of open neighborhoods in ωω
1 on which f is constant.

If O is dense, then we are done. Let P denote the interior of ωω
1 \ O. Thus P is

nonempty and it suffices to show that f−1(A) ∩ P has the Baire Property in P .
Since P is homeomorphic to ωω

1 we might as well assume that f is nowhere constant
to begin with. Let B be the preimage of A and assume that B does not have the
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Baire Property in ωω
1 . Then there is a nonempty open set (again, which we take to

be all of ωω
1 ) on which B and its complement are everywhere of second category.

Consider the ideal

I = {X ⊂ A | f−1(X) is meager in B}.

I is a σ-ideal on a set of size ω1 containing all singletons. We claim that I is ω1-
dense in the sense that the quotient algebra P (A)/I has a dense set of size ω1. This
will be a contradiction by a result in [14] which shows that an ω1-dense ideal on a
set of size ω1 cannot exist under MAω1 . Consider an I-positive set X. By MAω1

(see [6]) we may write

X =
⋃

n<ω

Xn,

where each Xn is closed in A. Thus

f−1(X) =
⋃

n<ω

f−1(Xn),

where each f−1(Xn) is relatively closed in B. So there is an n such that the
interior of f−1(Xn) is nonempty in the relative topology on B, which is to say,
there is s ∈ ω<ω

1 such that

∅ �= [s] ∩ B ⊂ f−1(Xn),

where [s] = {x ∈ ωω
1 | s ⊆ f}. Thus f [[s] ∩ B] is an I-positive subset of X. The

claim follows since there are only ω1 such sets.
We now show that A is not ω2-Universally Baire. It is more convenient to regard

A as a subset of the unit interval [0, 1]. We may assume that A is dense. Let I
be a precipitous ideal on A. For example, simply transfer the nonstationary ideal
NS on ω1 to A via a bijection between ω1 and A. This ideal is precipitous (in fact
saturated) under Martin’s Maximum. This means that given any set X ⊂ A with
X /∈ I and sequence of I partitions {Wn | n ∈ ω} of X with Wn+1 a refinement of
Wn, there is a sequence {Xn | n ∈ ω} with nonempty intersection such that each
Xn is an element of Wn (see [7, 8] for more details). Let B be the set of open
subintervals of [0, 1] with rational endpoints. We define an operation on the power
set of A by

∂S = S \
⋃

{b ∈ B | S ∩ b ∈ I}.
Note that S�∂S ∈ I for any S ⊆ A. Define a metric space M as the set of pairs
(x, (Xn)) ∈ A × Iω such that

(1) x ∈
⋂

n<ω Xn,
(2) (Xn) is decreasing modulo I,
(3) there are infinitely many n such that ∂Xn = Xn.

M is a subspace of [0, 1]× Iω with the product topology and is therefore metriz-
able (I is discrete). The key use of the precipitous property is the following claim.

Claim 3.2. M is a Baire space.

Proof. Suppose that the empty player wins the Banach-Mazur game on M by a
strategy τ . Here empty is the player who moves first and who wins if and only if
the intersection of the neighborhoods played is empty. As usual, it suffices to restrict
to basic open neighborhoods so we may assume that the output of τ is always such
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a set. A typical basic open neighborhood in M is of the form Nb,(Xi)i≤k
, for b ∈ B

and each Xi ⊂ b, defined to be the set of (x, (Yn)) ∈ M such that
(1) x ∈ b ∩

⋂
i∈ω Yi.

(2) Yi = Xi for every i ≤ k.
Let N be the set of open neighborhoods as above. For an element N = Nb,(Xi)i≤k

∈ N let ∂N denote Nb,(Xi)i≤k+1 where Xk+1 = ∂Xk. Also let l(N) denote Xk. Let
N be the first move according to τ . We build a subtree T ⊂ N<ω as follows. The
root of the tree is N . Suppose all sequences t of length k + 1 have been defined.
Given such a sequence t = (N0, N1, ..., Nk) suppose Nk = Nb,(Xi)i≤j

. By varying
plays for II which extend ∂Nk in the Banach-Mazur game and then applying τ , we
can produce a set of basic neighborhoods A ⊂ N such that the set of l(N) for N ∈ A
is a maximal P (A)/I antichain below l(Nk). Sequences of the form (N0, ..., Nk, N)
for N ∈ A will form the successors of t in T . For t ∈ T let Xt = l(N) where
N is the last neighborhood on the sequence t. Let Wk = {Xt | t ∈ T}. Then
the partitions Wk for k ∈ ω witness that the ideal I is not precipitous, giving the
desired contradiction. �

The projection map
π : M → A,

which is continuous and nowhere constant, lifts to

π̄ : βM → [0, 1].

The preimage B = π̄−1(A) has the Baire Property in βM by assumption as βM
has weight 2ω1 = ω2. Thus B can be written as the symmetric difference of an open
set U and a meager set F . As M is a Baire space M is of second category in βM
and hence U is nonempty as M ⊆ B. Let {Dn | n ∈ ω} be open and dense subsets
of U such that

⋂
n∈ω Dn ⊂ B. We can now build a Cantor scheme {Us | s ∈ 2<ω}

of open subsets of U such that if s ∈ 2n, then Us ⊂ Dn and for every s,

π̄[Ūs0] ∩ π̄[Ūs1] = ∅.
The set

P =
⋂

n

⋃

s∈2n

Ūs

is perfect in βM by compactness and so π̄[P ] is the desired perfect subset of A by
design. �
Corollary 3.3. BRPw(ω2) fails under MM .

Proof. Combine Theorem 3.1 with Theorem 1.2 and the fact that WRP(2)(ω2)
holds under MM . �
Theorem 3.4. Assume MM . There is a Baire metric space of weight ω2 with a
club of subspaces of weight ω1 which are meager in themselves. Hence BRPw(ω2)
fails.

Proof. For technical reasons we will work in the subspace M ⊂ ωω
2 of increasing

sequences. M is a complete metric space homeomorphic to ωω
2 . We will produce

X ⊂ M which is everywhere Baire but has the property that X∩δω∩M is meager in
δω∩M for every δ < ω2. We will use MAω1 and ♦(S) where S = {α < ω2 | cf(α) =
ω}. Let (dα | α ∈ S) be a ♦(S)-sequence. We construct X = {xα | α ∈ S} ⊂ M
as follows. If dα codes a map πα : α<ω → α<ω and an increasing p ∈ ω<ω

2 with
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the property that f(s) is increasing whenever s is increasing, then we view πα as a
Banach-Mazur strategy for player II in αω ∩ M and let xα ∈ M be any legal play
by this strategy where I has ensured that xα is cofinal in α and extends p. Fix a
comeager set D ⊆ M and a neighborhood determined by a finite increasing sequence
p. There is a winning strategy for II in the game associated to D, d : ω<ω

2 → ω2,
and there are club many α < ω2 which are closed under this strategy. Thus dα

codes d � α<ω together with p for some α ∈ S and hence xα ∈ D and extends p.
This shows that X is a Baire space. We claim that X ∩ δω ∩M is meager for every
δ < ω2. If δ ∈ S and (δn | n < ω) is a sequence cofinal in δ, then

X ∩ δω = {xδ} ∪
⋃

n<ω

X ∩ δω
n ∩ M,

a countable union of sets meager in δω ∩ M . So let us assume δ has cofinality ω1.
Here we use MAω1 . Let P be the set of conditions

p = (Γp, Xp)

such that Γp is a finite subset of δ and Xp is a finite subset of S ∩ δ. For a pair of
conditions p, q we define p ≤ q if Γq ⊆ Γp, Xq ⊆ Xp and for every α ∈ Xq we have
(Γp \ Γq) ∩ ran(xα) = ∅.

Claim 3.5. P satisfies the countable chain condition.

Proof. Suppose (pα | α < ω1) is an antichain. By two applications of the ∆-system
lemma we may assume that there are sets s and t such that

Γpα
∩ Γpβ

= s and Xpα
∩ Xpβ

= t

for every α < β < ω1. There is a subsequence which we reindex as

(pα | α < ω2 + 1)

such that for every α < β < ω2,

max(Γpα
\ s) < min(Xpβ

\ t).

It now follows that some xγ with γ ∈ Xpω2+1
has order type greater than ω which

is a contradiction. �

If G ⊂ P is a filter and G meets the requisite dense sets, then

Γ =
⋃

{Γp | p ∈ G}

is an unbounded subset of δ which is almost disjoint from xα for every α ∈ S ∩ δ.
An easy argument shows that each

Xk = {xα | α ∈ S ∩ δ and ∀n > k xα(n) ∈ δ \ Γ}
is meager, from which it follows that X ∩ δω ∩ M is meager in δω ∩ M . �

Theorem 3.6. BRPw(2ω) for point countable spaces fails under MAω1 .

Proof. We will use the tree σQ of countable well-ordered increasing sequences of
rationals which are bounded. We do not require the sequences to be continuous.
For t ∈ σQ and q ∈ Q let Bt,q denote

{s ∈ σQ | t ⊆ s and sup(s) < q}.
These sets together with their complements form a point countable base for a
zero-dimensional topology on σQ. We claim that σQ is a Baire space. In the
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relevant Banach-Mazur game, the nonempty player wins by ensuring that the tn
are increasing, where {Btn,qn

| n < ω} is the sequence of plays, in which case
⋃

n<ω

sn ∈
⋂

n<ω

Btn,qn
.

An ω1-club of closed subspaces of σQ are subtrees of σQ (viewed as a tree in the
obvious way), and have no isolated points. Simply close under the successor and
predecessor function. Any such T has size ω1 and hence is special under MAω1 (see
[16] for example). Let T be such a subspace and π : T → ω a specializing map.
Each π−1(n) is closed and nowhere dense in T . Thus T is meager in itself. �

We conclude with some observations concerning reflection of second category to
subspaces of countable weight. The principle analogous to BRPw(κ) would assert
that X ⊂ κω is meager iff X ∩ σω is meager for a club of σ ∈ [κ]ω. In the case
κ = ω1 a counterexample exists under ♦, and we suspect that the principle is true
under the Proper Forcing Axiom, though we do not have a proof at present. For
κ = ω2, the principle is outright false.

Theorem 3.7. There is X ⊂ ωω
2 of second category such that X ∩σω is meager in

σω for a club of σ ∈ [ω2]ω.

Proof. Fix a sequence {Cα | α < ω1 and cf(α) = ω} with each Cα : ω → α
cofinal and increasing, having the property that every club subset of ω2 includes
the range of one (and hence stationarily many) Cα (see [12]). Fix a surjective map
φ : [ω]ω → [ω1]ω. A real r ∈ 2ω codes a sequence of reals {rn | n < ω} defined by
rn(k) = r(2n(2k + 1)). We associate another operation φ∗ : [ω]ω → [ω1]ω defined
by

φ∗(r) =
⋃

n<ω

φ[rn],

where we identify a real s ∈ 2ω with s−1(1) ∈ [ω]ω. For σ ∈ [ω2]ω define νσ by

νσ = π−1
σ (φ∗(osc(σ)))

where πσ : σ → otp(σ) is the collapse of σ and osc(σ) is defined to be the set

{n | σ ∩ [Csup(σ)(n), Csup(σ)(n)) �= ∅}.

The sequence {νσ | σ ∈ [ω2]ω} can be shown to have the following property: for
any X ⊂ ω2 the set of σ ∈ [ω2]ω such that X ∩ σ = νσ is stationary in [ω2]ω (see
Lemma 43 of [15] and [5]). We may view νσ as coding a comeager subset of σω (as
in Theorem 3.4) in some canonical way. For example, fix a bijection

c : ω2 × ω<ω
2 → ω2,

and observe that if Y ⊂ ω × ω<ω
2 is a comeager set in the obvious way (Ŷ = {x ∈

ωω
2 | ∀n ∃k (n, x � k) ∈ Y } is comeager), then c−1(c(Y ) ∩ σ) = Ŷ ∩ ω × σ<ω is

comeager in σω for a club of σ ∈ [ω2]ω. Define the space X ⊂ ωω
2 to be {xσ | σ ∈

[ω2]ω where xσ is an element of c−1(νσ) in the case that this is a code for a comeager
set in σω, and such that the range of xσ = σ. It is clear that X is of second category
as for any comeager set Y ⊂ ωω

2 there is σ such that c−1(νσ) = Y ∩ (ω × σ<ω) so
that xσ is in Ŷ . On the other hand, X ∩ σω is a singleton (or empty), and hence
meager, for every σ ∈ [ω2]ω. �
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