On the extender algebra being complete

Richard Ketchersid∗¹ and **Stuart Zoble**∗∗²

¹ Department of Mathematics, Miami University of Ohio

² Department of Mathematics, University of Toronto

Received 13 February 2006, revised 7 September 2006, accepted 12 September 2006 Published online 15 December 2006

Key words Woodin cardinal, extender, iteration tree. **MSC (2000)** 03E55, 03E45

We show that a Woodin cardinal is necessary for the extender algebra to be complete. Our proof is relatively simple and does not use fine structure.

c 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Let $B_{\delta,\omega}$ denote the algebra of equivalence classes of Boolean strings in V_δ formed from a countable set of atoms $\{a_n \mid n < \omega\}$. Two strings φ and ψ are equivalent in $B_{\delta,\omega}$ if $A(\varphi) = A(\psi)$ in all generic extensions, where the map $A : B_{\delta,\omega} \longrightarrow P(P(\omega))$ is defined inductively from

$$
A(a_n) = \{ x \subseteq \omega \mid n \in x \}.
$$

Let δ be an inaccessible cardinal and $\mathcal{E} \subset V_{\delta}$ a set of extenders. The extender algebra $W_{\delta}(\mathcal{E})$ is defined as a quotient of $B_{\delta,\omega}$ by an ideal $I_{\mathcal{E}}$ defined from \mathcal{E} . For simplicity we require that an $E \in \mathcal{E}$ is a (κ, λ) -extender for some κ and λ , that λ is inaccessible and that E is strong to λ . I_E consists of elements of $B_{\delta,\omega}$ represented by strings of the form

$$
i_E(\vee_{\alpha<\kappa}\varphi_\alpha)\wedge\neg(\vee_{\alpha<\kappa}\varphi_\alpha)
$$

for such an $E \in \mathcal{E}$ and sequence $\{\varphi_{\alpha} \mid \alpha < \kappa\}$ from V_{κ} . The key property of $W_{\delta}(\mathcal{E})$ if δ is a Woodin cardinal as witnessed by $\mathcal E$ is that it satisfies the δ -chain condition, equivalently that it is a complete Boolean algebra. From this alone Woodin deduces the "every real generic" theorem, one of the most important tools in inner model theory.

Theorem 1.1 (Every real generic; Woodin) *Suppose M is a countable premouse and* $\mathcal{E} \subset V_{\delta}^M$ *is a set of enders in M extenders in* M*.*

1. If δ *is Woodin in* M *as witnessed by* \mathcal{E} *, then* $W_{\delta}(\mathcal{E})$ *is a complete Boolean algebra in* M.

2. If $W_\delta(\mathcal{E})$ is complete in M, and M is $(\omega_1 + 1)$ -iterable, then for every real $x \subset \omega$ in V there is an itera*tion* $i : M \longrightarrow M^*$ *via a tree of countable length such that* x *is* M^* -generic for $i(W_\delta(\mathcal{E}))$.

Here a premouse is merely a transitive set M and an ordinal $\delta \in M$ which satisfies a certain fragment of ZFC (see [2]). By M^* -generic we mean that $G_x = \{ [\varphi] \in i(W_\delta(\mathcal{E})) \mid x \in A(\varphi) \}$ is an M^* -generic filter. This will obtain exactly when

$$
x \notin \bigcup_{[\varphi] \in i(I_{\mathcal{E}})} A(\varphi)
$$

in which case $M^*[x] = M^*[G_x]$. The reader is referred to [3, Theorem 7.14] for more details. The proof given there is easily modified to prove the version above, that is, it is not necessary for M to be a fine structural model, a fact well-known to inner model theorists. The purpose of this note is to prove a converse to Theorem 1.1.

^{∗∗} Corresponding author: e-mail: szoble@math.toronto.edu

e-mail: ketchero@muohio.edu

Theorem 1.2 *Assume* δ *is an inaccessible cardinal and* $V_{\delta}^{\#}$ *exists. Assume* $\mathcal{E} \subset V_{\delta}$ *is a set of extenders* $d W_{\delta}(\mathcal{E})$ *is complete. Then some ordinal* $\alpha \leq \delta$ *is a Woodin cardinal in* $L(V)$ *and* $W_{\delta}(\mathcal{E})$ *is complete. Then some ordinal* $\alpha \leq \delta$ *is a Woodin cardinal in* $L(V_{\alpha})$ *.*

As a corollary we have that if δ is least such that some $W_{\delta}(\mathcal{E})$ is complete in $L(V_{\delta})$, then δ is Woodin in $L(V_{\delta})$. Woodin had proved an identical result using the backgrounded $L[\mathcal{E}]$ construction of [1]. Our proof has the virtue of only using "coarse methods", that is, techniques and results from [2]. Both are not optimal in that they seem to require the existence of $V^{\#}_{\delta}$. Moreover, it seems likely that there is a direct equivalence between the completeness of $W_{\delta}(\mathcal{E})$ and δ being Woodin in V. Here is one version of this conjecture of $W_{\delta}(\mathcal{E})$ and δ being Woodin in V. Here is one version of this conjecture.

Question 1.3 *Suppose* δ *is a cardinal and* $\mathcal{E} \subset V_{\delta}$ *is a set of extenders each of which is strong to its length. Suppose* $W_\delta(\mathcal{E})$ *is complete and has size* δ *. Must* δ *be a Woodin cardinal*?¹⁾

Our argument uses two theorems from [2]. The first, a slight variation on their Corollary 5.11, concerns iterability of countable submodels of the universe under a smallness assumption, and the second shows that complicated iteration trees actually give rise to Woodin cardinals.

Theorem 1.4 (Iterability; Martin, Steel) *Suppose no* $\alpha \leq \delta$ *is Woodin in* $L(V_\alpha)$ *. Suppose* $\pi : N \longrightarrow V_\theta$ *is elementary with* N *countable. Let* M *be the preimage of* $L(V_\delta)$ *. Then* M *is* ω_1 -*iterable via the strategy of picking the unique cofinal well-founded branch at limit stages.*

For an iteration tree T of limit length λ on a premouse M define

$$
\delta(T) = \sup_{\alpha < \lambda} \inf_{\alpha \le \gamma < \lambda} \operatorname{str}(E^T_\gamma)
$$

as in [2]. If b and c are cofinal branches of T, then $V_{\delta(T)}^{M_b} = V_{\delta(T)}^{M_c}$ is well-founded and we call this the "common next" of T and denote it $M(T)$. The following is [2] $G_{\delta(T)}^{(T)}$ part" of T and denote it $M(T)$. The following is [2, Corollary 2.3].

Theorem 1.5 (Distinct branches; Martin, Steel) *Suppose* T *is an iteration tree of limit length* λ *on a premouse* M and b and c are distinct cofinal branches. Suppose $\alpha \geq \delta(T)$ belongs to $\text{wfp}(M_b) \cap \text{wfp}(M_c)$. *Then* $L_{\alpha}(M(T))$ *thinks that* $\delta(T)$ *is a Woodin cardinal.*

2 Proof of Theorem 1.2

Suppose $V_{\delta}^{\#}$ exists and $W_{\delta}(\mathcal{E})$ is complete. Then $W_{\delta}(\mathcal{E})$ is complete in $L(V_{\delta})$.²⁾ We assume that no $\alpha \leq \delta$ is Woodin in $L(V)$. Let θ be sufficiently large and $\pi : N \longrightarrow V_{\delta}$ be elementary with Woodin in $L(V_\alpha)$. Let θ be sufficently large and $\pi : N \longrightarrow V_\theta$ be elementary with N countable and transitive and $V^\#$. S in the range of π , Let M denote the sollarge of $L(V_\alpha)$, that is $M = L N (\pi^{-1}(V_\alpha))$, and let $\bar{\$ and $V_0^{\#}$, \mathcal{E} in the range of π . Let M denote the collapse of $L(V_\delta)$, that is $M = L^N(\pi^{-1}(V_\delta))$, and let $\overline{\delta}$ denote the primary of δ . Then M is ω -iterable by Theorem 1.4. The (unique) iteration str the preimage of δ . Then M is ω_1 -iterable by Theorem 1.4. The (unique) iteration strategy is to pick the unique cofinal well-founded branch at every limit stage. We will work inside of $M[g]$, where $g \text{ } \text{ } \text{ } C \text{ } \text{ } \text{ } O(\omega, V_{\delta}^M)$ is V-ge-
norie, It is easy to see that $C \text{ } \text{ } O(\omega, V^M)$ is $\overline{\delta}$ + so in M and that $M[\alpha$ neric. It is easy to see that $Col(\omega, V_{\bar{\delta}}^M)$ is $\bar{\delta}^+$ -cc in M and that $M[g] = L_{\eta}[g]$, where $\eta = M \cap \overrightarrow{OR}$. It follows that $M[g]$ satisfies the Axiom of Choice (M may not) a fact which we shall use later. Our use of that $M[g]$ satisfies the Axiom of Choice (M may not), a fact which we shall use later. Our use of the existence of $V^{\#}$ is the following of $V_{\delta}^{\#}$ is the following.

Claim 2.1 *For any* $\gamma < \eta$ *and* $M[g]$ *-generic* $h \subset \text{Col}(\omega, \gamma)$ *the model* $M[g][h]$ *is* Σ^1_2 *correct in* V.

P r o o f. M is of the form $L_{\eta}(V_{\delta}^M)$. By standard facts about sharps, $\pi^{-1}(V_{\delta}^{\#}) = \pi^{-1}(V_{\delta})^{\#}$. Thus η , which the ordinal height of N as well as M is a limit cardinal of $I(M)$, in fact an inaccessible car is the ordinal height of N as well as M, is a limit cardinal of $L(M)$, in fact an inaccessible cardinal of $L(M)$
(we use here that θ is a suitable reflection point). Thus a is generic over $L(M)$ h is generic over $L(M)[q$ (we use here that θ is a suitable reflection point). Thus g is generic over $L(M)$, h is generic over $L(M)[g]$, and η is a limit cardinal of $L(M)[g][h]$. It follows from Schonfield absoluteness that $M[g][h]$ is Σ_2^1 is a limit cardinal of $L(M)[g][h]$. It follows from Schonfield absoluteness that $M[g][h]$ is Σ_2^1 -correct in V.

We will work inside $M[g]$, where $g \subset \text{Col}(\omega, V_{\delta})$ is a fixed M-generic in V. Let $x \in M[g]$ be a real coding
connection and V^M in the sense that $L[x] = L[g]$ say $x = L(p, m) \mid g(x) \in g(m)$. In M[g] we construct the generic g and V_0^M in the sense that $L[x] = L[g]$, say $x = \{(n, m) \mid g(n) \in g(m)\}\$. In $M[g]$ we construct an iteration tree on M to make x generic over the final model. Note that $(\omega_1)^{M[g]} = (\bar{\delta}^+)^M < \eta$. Call this ordinal κ . We claim that either ordinal κ . We claim that either

1. at some limit stage $\alpha \leq \kappa$, $M[g]$ does not see a cofinal well-founded branch of $T \restriction \alpha$, or

2. the construction succeeds in producing an iterate M^* over which x is generic via a tree which is countable in $M[g]$.

¹⁾ One could also consider the δ -generator version of the extender algebra; see [3].

²⁾ $L(V_\delta)$ may not see an arbitrary $\mathcal E$ but we may assume without loss of generality that $\mathcal E$ is the set of all extenders in V_δ .

This proof of Theorem 1.1. shows that 2. must hold if 1. fails. There are some subtle issues here so we elaborate on this point. First, we have shown that $M[g]$ is a model of **ZFC**. In fact, $M[g] = L_n[g]$ has a definable well-ordering. This ordering is used to construct the tree T on M. At a stage β find the least extender E which belongs to $i_{0,\beta}(\mathcal{E})$ (which is a subset of M_{β} and hence $M[g]$) and which generates an element $[\varphi]$ of $i_{0,\beta}(I_{\mathcal{E}})$ which is satisfied by x in the sense that $x \in A(\varphi)$. Apply this extender to the appropriate model on the tree (according to the requirements in the definition of iteration tree). At limit stages pick the unique cofinal well-founded branch if it exists. Suppose case 1. does not obtain and the construction lasts κ stages producing a tree T of length κ with cofinal well-founded branch b and an embedding $i_b : M \longrightarrow M_b$. For a model M_β on the tree let M_A^* denote $i_{0,\beta}(V_{\delta}^M)$. Thus T may be viewed as a tree on these smaller structures. Inside $M[g]$ let $j: H \longrightarrow V_{\epsilon}$, where ϵ is large enough H is countable and transitive and *i* is elementary with $x, b, T \in \text{ran}(i)$. Let where ξ is large enough, H is countable and transitive and j is elementary with $x, b, T \in \text{ran}(j)$. Let $\alpha = H \cap \kappa$.
It is easy to see that $\alpha \in h$, $i^{-1}(M^*) = M^*$ and It is easy to see that $\alpha \in b$, $j^{-1}(M_b^*) = M_\alpha^*$ and

$$
j\restriction M_\alpha^*=i_{\alpha,b}\restriction M_\alpha^*
$$

giving the usual contradiction.

We now show that cases 1. and 2. both contradict our original smallness assumption. The second case leads to a contradiction as follows. Let $i^* : M \longrightarrow M^*$ which we have assumed is definable in $M[g]$. By assumption,
x is generic for $i^*(W_{\tau}(S))$ Clearly $M^*[x] = M[g]$. By the chain condition $i^*(\bar{\delta})$ is a regular cardinal of x is generic for $i^*(W_{\overline{\delta}}(\mathcal{E}))$. Clearly $M^*[x] = M[g]$. By the chain condition $i^*(\overline{\delta})$ is a regular cardinal of $M^*[x]$
and hence is equal to κ . This is a contradiction because $M[a]$ sees that $i^*(\overline{\delta})$ is a and hence is equal to κ . This is a contradiction because $M[g]$ sees that $i^*(\delta)$ is a countable ordinal. So we may assume that the first case obtains. Let λ be the limit length of the tree T for which $M[g]$ does not see a well-founded cofinal branch. In the outside world, there is a unique cofinal well-founded branch b_{λ} with final well-founded model M_{λ} .

Claim 2.2 *For any* $\gamma \leq \eta$ *there is* $h \subset \text{Col}(\omega, \gamma)$ *which is* $M[q]$ *-generic such that* $M[q][h]$ *sees distinct cofinal branches of* T *with* γ *in the well-founded part of both final models.*

Proof. Let $\gamma < \eta$. In any such $M[g][h]$ there is a cofinal branch b of T with γ in the well-founded part of M_h by Claim 2.1 as the sentence asserting the existence of such a branch is Σ_2^1 in any code for a well-ordering of length γ . If this branch were unique, then necessarily $b = b_{\lambda}$ and we would have $b_{\lambda} \in M[g]$ by homogeneity of the forcing Col (ω, γ) , contrary to our assumption. the forcing $Col(\omega, \gamma)$, contrary to our assumption.

Thus in any such $M[g][h]$ the model $L_n(M(T))$ thinks that $\delta(T)$ is Woodin by Theorem 1.5 and hence $M[g]$ sees that $L_{\eta}(M(T))$ thinks that $\delta(T)$ is Woodin. Let $i_{\lambda}: M \longrightarrow M_{b_{\lambda}}$ be the branch embedding, which exists outside of M. Thus $M_{b\lambda}$ thinks that some ordinal $\alpha \leq i_{\lambda}(\overline{\delta})$ is Woodin in $L(V_{\alpha})$ so M thinks the same of some ordinal $\alpha < \overline{\delta}$ contradicting our assumption. An alternate argument suggested by the referee is that since $M[q]$ sees T and $M(T)$ and the map i_{λ} is elementary, one has that $L(M(T))$ thinks that $\delta(T)$ is not Woodin. Hence by the proof of Claim 2.1, $L_n(M(T))$ also sees that $\delta(T)$ is not Woodin and the Q-structure $Q(b_\lambda, T)$ (see [3]) of $M_{b\lambda}$ belongs to $M[g]$ from which it follows b_{λ} must belong to $M[g]$ contradicting our assumption.

Acknowledgements The authors wish to thank Hugh Woodin for useful suggestions.

References

- [1] W. Mitchell and J. Steel, Fine Structure and Iteration Trees. Lecture Notes in Logic 3 (Springer, 1994).
- [2] D. Martin and J. Steel, Iteration trees. J. Amer. Math. Soc. **7**, 1 73 (1994).
- [3] J. Steel, An Outline of Inner Model Theory. In: Handbook of Set Theory. Forthcoming.