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On the extender algebra being complete
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We show that a Woodin cardinal is necessary for the extender algebra to be complete. Our proof is relatively
simple and does not use fine structure.
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1 Introduction

Let Bδ,ω denote the algebra of equivalence classes of Boolean strings in Vδ formed from a countable set of
atoms {an | n < ω}. Two strings ϕ and ψ are equivalent in Bδ,ω if A(ϕ) = A(ψ) in all generic extensions,
where the map A : Bδ,ω −→ P (P (ω)) is defined inductively from

A(an) = {x ⊆ ω | n ∈ x}.
Let δ be an inaccessible cardinal and E ⊂ Vδ a set of extenders. The extender algebra Wδ(E) is defined as a
quotient of Bδ,ω by an ideal IE defined from E . For simplicity we require that an E ∈ E is a (κ, λ)-extender for
some κ and λ, that λ is inaccessible and that E is strong to λ. IE consists of elements of Bδ,ω represented by
strings of the form

iE(∨α<κϕα) ∧ ¬(∨α<κϕα)

for such an E ∈ E and sequence {ϕα | α < κ} from Vκ. The key property of Wδ(E) if δ is a Woodin cardinal
as witnessed by E is that it satisfies the δ-chain condition, equivalently that it is a complete Boolean algebra.
From this alone Woodin deduces the “every real generic” theorem, one of the most important tools in inner
model theory.

Theorem 1.1 (Every real generic; Woodin) Suppose M is a countable premouse and E ⊂ V M
δ is a set of

extenders in M .
1. If δ is Woodin in M as witnessed by E , then Wδ(E) is a complete Boolean algebra in M .

2. If Wδ(E) is complete in M , and M is (ω1 + 1)-iterable, then for every real x ⊂ ω in V there is an itera-
tion i : M −→ M∗ via a tree of countable length such that x is M ∗-generic for i(Wδ(E)).

Here a premouse is merely a transitive set M and an ordinal δ ∈ M which satisfies a certain fragment of ZFC
(see [2]). By M∗-generic we mean that Gx = {[ϕ] ∈ i(Wδ(E)) | x ∈ A(ϕ)} is an M∗-generic filter. This will
obtain exactly when

x /∈ ⋃
[ϕ]∈i(IE) A(ϕ)

in which case M∗[x] = M∗[Gx]. The reader is referred to [3, Theorem 7.14] for more details. The proof given
there is easily modified to prove the version above, that is, it is not necessary for M to be a fine structural model,
a fact well-known to inner model theorists. The purpose of this note is to prove a converse to Theorem 1.1.
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Theorem 1.2 Assume δ is an inaccessible cardinal and V #
δ exists. Assume E ⊂ Vδ is a set of extenders

and Wδ(E) is complete. Then some ordinal α ≤ δ is a Woodin cardinal in L(Vα).
As a corollary we have that if δ is least such that some Wδ(E) is complete in L(Vδ), then δ is Woodin in L(Vδ).

Woodin had proved an identical result using the backgrounded L[E ] construction of [1]. Our proof has the virtue
of only using “coarse methods”, that is, techniques and results from [2]. Both are not optimal in that they seem to
require the existence of V #

δ . Moreover, it seems likely that there is a direct equivalence between the completeness
of Wδ(E) and δ being Woodin in V . Here is one version of this conjecture.

Question 1.3 Suppose δ is a cardinal and E ⊂ Vδ is a set of extenders each of which is strong to its length.
Suppose Wδ(E) is complete and has size δ. Must δ be a Woodin cardinal?1)

Our argument uses two theorems from [2]. The first, a slight variation on their Corollary 5.11, concerns
iterability of countable submodels of the universe under a smallness assumption, and the second shows that
complicated iteration trees actually give rise to Woodin cardinals.

Theorem 1.4 (Iterability; Martin, Steel) Suppose no α ≤ δ is Woodin in L(Vα). Suppose π : N −→ Vθ is
elementary with N countable. Let M be the preimage of L(Vδ). Then M is ω1-iterable via the strategy of picking
the unique cofinal well-founded branch at limit stages.

For an iteration tree T of limit length λ on a premouse M define

δ(T ) = supα<λ infα≤γ<λ str(ET
γ )

as in [2]. If b and c are cofinal branches of T , then V Mb

δ(T ) = V Mc

δ(T ) is well-founded and we call this the “common
part” of T and denote it M(T ). The following is [2, Corollary 2.3].

Theorem 1.5 (Distinct branches; Martin, Steel) Suppose T is an iteration tree of limit length λ on a pre-
mouse M and b and c are distinct cofinal branches. Suppose α ≥ δ(T ) belongs to wfp(Mb) ∩ wfp(Mc).
Then Lα(M(T )) thinks that δ(T ) is a Woodin cardinal.

2 Proof of Theorem 1.2

Suppose V #
δ exists and Wδ(E) is complete. Then Wδ(E) is complete in L(Vδ).2) We assume that no α ≤ δ is

Woodin in L(Vα). Let θ be sufficently large and π : N −→ Vθ be elementary with N countable and transitive
and V #

δ , E in the range of π. Let M denote the collapse of L(Vδ), that is M = LN (π−1(Vδ)), and let δ̄ denote
the preimage of δ. Then M is ω1-iterable by Theorem 1.4. The (unique) iteration strategy is to pick the unique
cofinal well-founded branch at every limit stage. We will work inside of M [g], where g ⊂ Col(ω, V M

δ̄
) is V -ge-

neric. It is easy to see that Col(ω, V M
δ̄

) is δ̄+-cc in M and that M [g] = Lη[g], where η = M ∩ OR. It follows
that M [g] satisfies the Axiom of Choice (M may not), a fact which we shall use later. Our use of the existence
of V #

δ is the following.

Claim 2.1 For any γ < η and M [g]-generic h ⊂ Col(ω, γ) the model M [g][h] is Σ1
2 correct in V .

P r o o f. M is of the form Lη(V M
δ̄

). By standard facts about sharps, π−1(V #
δ ) = π−1(Vδ)#. Thus η, which

is the ordinal height of N as well as M , is a limit cardinal of L(M), in fact an inaccessible cardinal of L(M)
(we use here that θ is a suitable reflection point). Thus g is generic over L(M), h is generic over L(M)[g], and η
is a limit cardinal of L(M)[g][h]. It follows from Schonfield absoluteness that M [g][h] is Σ1

2-correct in V .

We will work inside M [g], where g ⊂ Col(ω, Vδ̄) is a fixed M -generic in V . Let x ∈ M [g] be a real coding
the generic g and V M

δ̄
in the sense that L[x] = L[g], say x = {(n,m) | g(n) ∈ g(m)}. In M [g] we construct

an iteration tree on M to make x generic over the final model. Note that (ω1)M [g] = (δ̄+))M < η. Call this
ordinal κ. We claim that either

1. at some limit stage α ≤ κ, M [g] does not see a cofinal well-founded branch of T � α, or

2. the construction succeeds in producing an iterate M ∗ over which x is generic via a tree which is countable
in M [g].

1) One could also consider the δ-generator version of the extender algebra; see [3].
2) L(Vδ) may not see an arbitrary E but we may assume without loss of generality that E is the set of all extenders in Vδ .
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This proof of Theorem 1.1. shows that 2. must hold if 1. fails. There are some subtle issues here so we elaborate
on this point. First, we have shown that M [g] is a model of ZFC. In fact, M [g] = Lη[g] has a definable well-or-
dering. This ordering is used to construct the tree T on M . At a stage β find the least extender E which belongs
to i0,β(E) (which is a subset of Mβ and hence M [g]) and which generates an element [ϕ] of i0,β(IE) which is
satisfied by x in the sense that x ∈ A(ϕ). Apply this extender to the appropriate model on the tree (according to
the requirements in the definition of iteration tree). At limit stages pick the unique cofinal well-founded branch
if it exists. Suppose case 1. does not obtain and the construction lasts κ stages producing a tree T of length κ
with cofinal well-founded branch b and an embedding ib : M −→ Mb. For a model Mβ on the tree let M∗

β

denote i0,β(V M
δ̄

). Thus T may be viewed as a tree on these smaller structures. Inside M [g] let j : H −→ Vξ,
where ξ is large enough, H is countable and transitive and j is elementary with x, b, T ∈ ran(j). Let α = H ∩ κ.
It is easy to see that α ∈ b, j−1(M∗

b ) = M∗
α and

j � M∗
α = iα,b � M∗

α

giving the usual contradiction.
We now show that cases 1. and 2. both contradict our original smallness assumption. The second case leads

to a contradiction as follows. Let i∗ : M −→ M∗ which we have assumed is definable in M [g]. By assumption,
x is generic for i∗(Wδ̄(E)). Clearly M∗[x] = M [g]. By the chain condition i∗(δ̄) is a regular cardinal of M∗[x]
and hence is equal to κ. This is a contradiction because M [g] sees that i∗(δ̄) is a countable ordinal. So we
may assume that the first case obtains. Let λ be the limit length of the tree T for which M [g] does not see a
well-founded cofinal branch. In the outside world, there is a unique cofinal well-founded branch bλ with final
well-founded model Mλ.

Claim 2.2 For any γ < η there is h ⊂ Col(ω, γ) which is M [g]-generic such that M [g][h] sees distinct cofinal
branches of T with γ in the well-founded part of both final models.

P r o o f. Let γ < η. In any such M [g][h] there is a cofinal branch b of T with γ in the well-founded part of Mb

by Claim 2.1 as the sentence asserting the existence of such a branch is Σ1
2 in any code for a well-ordering of

length γ. If this branch were unique, then necessarily b = bλ and we would have bλ ∈ M [g] by homogeneity of
the forcing Col(ω, γ), contrary to our assumption.

Thus in any such M [g][h] the model Lη(M(T )) thinks that δ(T ) is Woodin by Theorem 1.5 and hence M [g]
sees that Lη(M(T )) thinks that δ(T ) is Woodin. Let iλ : M −→ Mbλ

be the branch embedding, which exists
outside of M . Thus Mbλ

thinks that some ordinal α ≤ iλ(δ̄) is Woodin in L(Vα) so M thinks the same of some
ordinal α ≤ δ̄ contradicting our assumption. An alternate argument suggested by the referee is that since M [g]
sees T and M(T ) and the map iλ is elementary, one has that L(M(T )) thinks that δ(T ) is not Woodin. Hence
by the proof of Claim 2.1, Lη(M(T )) also sees that δ(T ) is not Woodin and the Q-structure Q(bλ, T ) (see [3])
of Mbλ

belongs to M [g] from which it follows bλ must belong to M [g] contradicting our assumption.
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