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DETERMINACY FROM STRONG REFLECTION

JOHN STEEL AND STUART ZOBLE

Abstract. The Axiom of Determinacy holds in the inner model L(R) assum-
ing Martin’s Maximum for partial orderings of size c.

1. Introduction

A theorem of Neeman gives a particularly elegant sufficient condition for a set
B of reals to be determined: B is determined if there is a triple (M, τ,Σ) which
captures B in the sense that M is a model of a sufficient fragment of set theory, τ
is a forcing term in M with respect to the collapse of some Woodin cardinal δ of
M to be countable, and Σ is an ω + 1-iteration strategy for M such that

B ∩N [g] = i(τ )g,

whenever i : M → N is an iteration map by Σ, and g is generic over N for
the collapse of i(δ). The core model induction, the subject of the forthcoming
book [16], is a method pioneered by Woodin for constructing such triples (M, τ,Σ)
by induction on the complexity of the set B. It seems to be the only generally
applicable method for making fine consistency strength calculations above the level
of one Woodin cardinal. We employ this method here to establish that the Axiom
of Determinacy holds in the inner model L(R) from consequences of the maximal
forcing axiom MM(c), or Martin’s Maximum for partial orderings of size c. The
particular consequences we use are the saturation of the nonstationary ideal on
ω1, and the simultaneous reflection principle WRP(2)(ω2) asserting that for any
stationary subsets S and T of [ω2]

ω there is an ordinal δ < ω2 so that S ∩ [δ]ω and
T ∩ [δ]ω are both stationary in [δ]ω.

Theorem 1. WRP(2)(ω2) plus NS saturated implies ADL(R).

Corollary 2. MM(c) implies ADL(R).

This theorem, obtained in late 2000, builds on Woodin’s proof of PD from the
same hypotheses (9.85 of [25]), and represents the first proof of the consistency of
the Axiom of Determinacy from Forcing Axioms. The first author subsequently
obtained the same conclusion in [22] from a single failure of square (and hence from
PFA) building on Woodin’s theorem that PFA together with an inaccessible gives
AD in the Solovay model. Unlike that proof, which relies on covering lemmas to
produce the models required for the induction step, we use the generic embedding
derived from the saturated ideal. This has its precedents in the first author’s proof
of Δ∼

1
2 determinacy from a presaturated ideal on ω1 together with a measurable
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cardinal, and in Woodin’s proof, via the core model induction, of ADL(R) from an
ω1-dense ideal on ω1.

While our theorem represents the best known lower bound for the consistency
strength of MM(c), this principle is believed to be much stronger. In Chapter 6 we
discuss some results suggesting that the arguments here cannot take us much far-

ther than ADL(R), and some extensions of the main theorem which could plausibly
yield an equiconsistency result at the level of ω2-Woodin cardinals from modified
hypotheses.

2. Framework of the induction

Let us recall some terminology from [22].

Definition 3. Let U ⊆ R, and k < ω. Let N be countable and transitive, and
suppose δ0, ..., δk, S, and T are such that

(a) N |= ZFC ∧ δ0 < ... < δk are Woodin cardinals,
(b) N |= S, T are trees which project to complements after the collapse of δk

to be countable, and
(c) there is an ω1+1-iteration strategy Σ for N such that whenever i : N → P

is an iteration map by Σ and P is countable, then p[i(S)] ⊆ U and p[i(T )] ⊆
R \ U .

Then we say that N is a coarse (k, U)-Woodin mouse, as witnessed by S, T,Σ, δ0,
..., δk.

Definition 4. W ∗
α denotes the following assertion. If U ⊆ R, and there are scales

�φ and �ψ on U and R \ U respectively such that �φ∗, �ψ∗ ∈ Jα(R), where �φ∗ and �ψ∗

are the sequences of prewellorders associated to the scales, then for all k < ω and
x ∈ R there are N,Σ such that

(1) x ∈ N , and N is a coarse (k, U)-Woodin mouse, as witnessed by Σ, and
(2) Σ � HC ∈ Jα(R).

Our core model induction will show that

V [g] |= ∀α W ∗
α,

whenever g ⊂ Col(ω, ω1) is V -generic. FromW ∗
α we get a version of mouse capturing

by fine-structural mice. Let us recall the relevant definitions from [22]. To any Σ1

formula θ(v) we associate formulae θk(v) for k ∈ ω, such that θk is Σk, and for any
γ and any real x,

Jγ+1(R) |= θ[x] ⇔ ∃k < ωJγ(R) |= θk[x].

Our fine-structural witnesses are as follows.

Definition 5. Suppose θ(v) is a Σ1 formula (in the language of set theory expanded
by a name for R), and z is a real; then a (θ, z)-witness is an ω-sound, (ω, ω1, ω1+1)-
iterable z-mouse N in which there are δ0 < ... < δ9, S, and T such that N satisfies
the formulae expressing

(a) ZFC,
(b) δ0, ..., δ9 are Woodin,
(c) S and T are trees on some ω × η which are absolutely complementing in

V Col(ω,δ9), and
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(d) for some k < ω, p[T ] is the Σk+3-theory (in the language with names for
each real) of Jγ(R), where γ is least such that Jγ(R) |= θk[z].

Definition 6. Wα is the assertion: if θ(v) is Σ1, z ∈ R, and Jα(R) |= θ[z], then
there is a (θ, z)-witness N whose associated iteration strategy, when restricted to
countable iteration trees, is in Jα(R).

We have

Lemma 7. Assume W ∗
α holds; then

(a) Jα(R) |= AD, and
(b) Wα holds if α is a limit ordinal.

See [22] for a proof of (b), which is essentially Woodin’s mouse set theorem for
L(R). Part (a) is an easy exercise for our intended reader.1 We note that Wα easily
implies other forms of capturing by fine-structural mice, and in particular:

Lemma 8. Assume Wα holds. If a is countable transitive, and b ⊆ a, where b is
ordinal definable from parameters in a ∪ {a} over some Jγ(R), where γ < α, then
there is an a-premouse M such that b ∈ M, and Jα(R) |= M is ω1-iterable.

In our proof of W ∗
β+1, we get the capturing mice we need in V [g][G], where

G ⊂ (P (ω1)/NS)V is generic over V [g]. We then use an inductively maintained
resemblance between V [g] and V [g][G] to find these mice in V [g]. This leads us to
a second induction hypothesis.

Definition 9. Iα is the assertion: whenever h×G is Col(ω, ω1)× (P (ω1)/NS)V -
generic over V , there is a Σ1 embedding

π : Jα(R)
V [h] → Jα(R)

V [G][h]

such that π � ωα is the identity.

An easy consequence of Lemma 7(a) and our induction hypotheses together is

Lemma 10. Assume Iα holds. Let g × G be Col(ω, ω1) × (P (ω1)/NS)V -generic
over V , and suppose V [g] |= W ∗

α; then AD holds in Jα(R)
V [g] and in Jα(R)

V [G][g].

We shall see later that AD holds in Jα(R)
V [G] as well; see Lemma 39.

As mentioned above, we shall be proving that W ∗
α holds in V [g], by induction

on α. Clearly, the only stages which matter are the critical ones, where

Definition 11. An ordinal β is critical just in case there is some set U ⊆ R such
that U and R \ U admit scales in Jβ+1(R), but U admits no scale in Jβ(R).

Once again, here we are identifying a scale with the sequence of its prewellorder-
ings. Clearly, we need only show that W ∗

β+1 holds whenever β is critical, in order

to conclude that W ∗
α holds for all α. It follows from [23] that if β is critical, then

β + 1 is critical. Moreover, if β is a limit of critical ordinals, then β is critical if
and only if Jβ(R) is not an admissible set. Letting β be critical, we then have the
following possibilities:

(1) β = η + 1, for some critical η;
(2) β is a limit of critical ordinals, and either

1Part (a) follows directly from Neeman’s theorem in [12], but one doesn’t need that much
firepower. The results of Martin-Steel [9], together with Woodin’s genericity iterations (see [20]),
yield it easily.
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(a) cof(β) = ω or
(b) cof(β) > ω, but Jβ(R) is not admissible;

(3) α = sup({η < β | η is critical}) is such that α < β,
and either

(a) [α, β] is a Σ1 gap or
(b) β − 1 exists, and [α, β − 1] is a Σ1 gap.

We shall call (3) the admissible case, because it corresponds precisely to crossing a
Σ1 gap whose initial ordinal is admissible.

The hypothesis Iα is not used as an input in the arguments of the admissible
case but is instead produced as an output. On the other hand, it is used in the
inadmissible case. Iα originates in [26], where it is part of a proof that the saturation
of NS and WRP(2)(ω2) imply W ∗

α for α the first admissible over the reals. Our
argument here follows the overall structure of [26] pretty closely. What we add are
some techniques for getting past admissible ordinals using hybrid strategy mice.
These techniques were also used in [22].

We now give a final remark on the organization of our proof. It might perhaps
be more natural to think of ourselves as proving that W ∗

α holds in V , for all α. As
in any core model induction, given a critical ordinal β, the first step toward W ∗

β+1

in V is to find a (hybrid) mouse operator J which codes up truth at the level of

the first pointclass Σ∼
Jβ(R)
n having the scale property. In order to prove W ∗

β+1, we

then need to capture truth over Jβ(R) in full, and for this we need to construct
the “k-many-J-Woodins” operators MJ

k , for all k. These “successor steps” are
where core model theory (relativised to J) comes in. The core model theory in our
argument requires that J first be extended to H(ω3), in a way that is consistent
with its images π(J) under NS-generic ultrapower maps. The extension to H(ω2)
is equivalent to an extension to H(ω1)

V [g]. It is at this point that we must consider
W ∗

γ in V [g], where γ < π(β) for some NS-generic π. Extending J involves showing
that π(β) is independent of the NS-generic, and W ∗

γ holds in V [g] at all γ ≤ π(β).
This subinduction in V [g] leading to an extension of J is also where Iγ is used.

3. The successor step

The successor step in a core model induction is the step from a model operator
J to the one J-Woodin operator. There are two important sorts of model operators
for which one needs to make this step, the mouse operators and the hybrid mouse
operators. We shall consider only mouse operators in this section, but the proof
works without much change for model operators in general. We shall consider
hybrid mouse operators in the last section of the paper.

Our proof builds on the proofs of the following theorems.

Theorem 12 (Steel, [18]). Assume there is a measurable cardinal and a presatu-
rated ideal on ω1; then Δ∼

1
2 determinacy holds.

Theorem 13 (Woodin, [25, 9.85]). Assume WRP(2)(ω2) and that NS is saturated;
then PD holds, and continues to hold in the universe after ω2 is collapsed.

Roughly, the proof of the first theorem supplies the core model theory we need,
and the proof of the second shows how to integrate the core model theory into a
core model induction.
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Woodin’s argument shows inductively that H(ω3) is closed under the M#
n mouse

operator for each n < ω. We shall give the proof in somewhat greater generality.
Roughly, rather than doing the first ω steps of a core model induction, we will be
doing the general successor step. For that, we need to have as data an operator J

such that H(ω3) is closed under J ; we then show that H(ω3) is closed under MJ,�
1 .

(M �
1(a) = MJ,�

1 (a), for J(P) = rud(P).) Here we shall just consider the case that
J is a first order mouse operator. In the last section we shall be forced to consider
a more general J .

Since it requires only a little additional work, we shall assume only WRP(2)(ω2),
there is a presaturated ideal on ω1, and 2ω1 ≤ ω2. Woodin has shown that
WRP(2)(ω2) and the saturation of NS together imply that 2ω1 ≤ ω2; see Lemma 30
below. We believe that in fact WRP(2)(ω2) together with a presaturated ideal on
ω1 should be enough for our argument, but have not checked that carefully. See
Lemma 31 below.

The properties of our initial mouse operator J that make the general successor
step possible are that

(1) J condenses well,
(2) J relativises well,
(3) J determines itself on generic extensions, and
(4) I-generic embeddings move J to itself.

Here I is our presaturated ideal. We now explain these properties. The reader
should keep in mind the example Jn(b) = M �

n(b), which has all of them. That it
has property (4) is one of the main things our induction will show.

We need to consider premice over some transitive set b, with a distinguished
parameter a ∈ b. In this context, we shall always in this paper assume that b is
selfwellordered, that is, equipped with a wellorder that is (uniformly over all b under
consideration) rudimentary in a.2 The language L0 of such relativized premice is

the language of premice, together with additional constant symbols ḃ and ȧ for the
set thrown in at the bottom and its distinguished element.

Iterations of a relativized premouse M are always by extenders on its coherent
sequence, all of which have critical points above ḃM . A relativised premouse M is
countably iterable if whenever π : N → M is L0- elementary withN countable, then
N is ω1+1-iterable. Fix b transitive. Any two sound countably iterable premice over
b which project to b are comparable (see [20]). (Their possibly different parameters
are irrelevant at this point.) The lower part closure of b is defined as the union of
all b-premice N which are countably iterable, sound, and satisfy ρω(M) = b. Lp(b)
can be regarded as a countably iterable b-premouse in its own right, over any a ∈ b.
We sometimes write Lpa(b) when we want to think of it this way, but we shall drop
the superscript a when it is safe to do so.

Definition 14. Let ν ≥ ω1 be regular, and a ∈ H(ν). Let ϕ be an rQ-sentence of
L0. Suppose that for any transitive, selfwellordered b ∈ H(ν) such that a ∈ b, there
is a countably iterable premouse M over b with parameter a such that M |= ϕ;
then we set

Jϕ(b) = Lpa(b)|γ,

2We are essentially working with b’s which are sets of ordinals, and sweeping some codings
under the rug.
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where γ is least such that Lpa(b) |= ϕ. We call the map b �→ Jϕ(b) a (first order)
(ν, a)-mouse operator. We say that Jϕ is defined on the H(ν)-cone above a.

Remark 15. In some contexts, the countable iterability requirement we have im-
posed above is too onerous. For example, if H(ω1) is closed under sharps, then ω1-

iterability is enough to identify the true M �
1 . We don’t need full ω1 + 1-iterability.

This fact will be important for us when we consider mice in V [h], for h generic
over Col(ω, ω2). Our hypotheses are consistent with V = L[A] for some A ⊆ ω3,

so they do not imply that M �
1 is ω1 + 1-iterable in V [h]. (An iteration to make A

generic will provide a counterexample.) We do have to consider countable mice in
V [h], in order to show the mouse operators in smaller models behave well. How-
ever, we don’t need to consider mouse operators in V [h], so we can stick with the
ω1 + 1-iterability requirement of Definition 14.

An important property of first order mouse operators is that they condense well,
in the sense of the following lemma.

Lemma 16. Let J be a first order mouse operator with parameter a. Let b ∈
dom(J), and let π : M → J(b) be rQ-elementary, with π(c) = b and π � TC(a∪{a})
being the identity; then c ∈ dom(J), and M = J(c).

One theme of this paper is that simultaneous reflection can be used to lift closure
under certain operations from P (ω1) to P (ω2). In [25], Woodin gives a proof that
under WRP(2)(ω2), closure of P (ω1) under sharps entails closure of P (ω2) under

sharps. His proof of Theorem 10 involved analogous arguments for the M#
n opera-

tion. The following is a straightforward generalization to first order mouse opera-
tors. There is a related argument in [27], where it is shown that under WRP(2)(ω2),
ω1-Universally Baire self-justifying systems are ω2-Universally Baire. What is key
to all the arguments is that the function being extended from P (ω1) to P (ω2)
condenses well.

Definition 17. For regular cardinals κ < λ, we say that Mouse Reflection holds
at (κ, λ) iff for every a ∈ H(κ), every (κ, a)-mouse operator can be extended to a
(λ, a)-mouse operator. If λ = κ+, we say that Mouse Reflection holds at κ.

Lemma 18. WRP(2)(ω2) implies Mouse Reflection at ω2.

Proof. Let J = Jϕ be a first order mouse operator with parameter a defined on the
H(ω2)-cone above a. Fix a transitive, selfwellordered b in H(ω3) such that a ∈ b.
We must show that there is a countably iterable b-premouse with parameter a that
satisfies ϕ.

For σ ∈ [b]ω such that a ∈ σ, let bσ be the transitive collapse of σ, and let aσ be
the collapse of a.

Claim. For club many σ ∈ [b]ω, there is a countably iterable bσ-premouse M, with
parameter aσ, such that M |= ϕ.

Proof. If not, then one-set stationary reflection for [b]ω gives us an X ⊆ b such that
|X| = ω1, TC(a ∪ {a}) ⊆ X, and for stationary many σ ∈ [X]ω the conclusion of
the claim fails. But let bX be the collapse of X, and note that a is fixed by this
collapse. Let N = Jϕ(bX). It is clear that for club many σ ∈ [X]ω, there is a
countable Y ≺ N such that Y ∩X = σ. For such σ, the collapse of Y is an M as
in the claim. Contradiction. �
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For c ∈ dom(J), let T J (c) = {〈ψ, t〉 | t ∈ c<ω ∧ψ ∈ L0 ∧J(c) |= ψ[t]}. Since J(c)
projects to c, it is coded by T J (c). Our goal is to define the appropriate theory to
be T J(b). To this end, for t ∈ [b]<ω and ψ(v) an L0 formula, put

Sψ,t = {σ ∈ [b]ω | tσ ∈ T J (bσ)}.

Claim. For any ψ, t, one of Sψ,t and S¬ψ,t contains a club in [b]ω.

Proof. Otherwise we can find X ⊆ b such that |X| = ω1, t ∈ X, TC(a∪ {a}) ⊆ X,
and both Sψ,t and S¬ψ,t are stationary in [X]ω. Let bX be the transitive collapse
of X, and tX the image of t under the collapse. The collapse fixes a. Arguing as
in the first claim, we see that if J(bX) |= ψ[tX ], then Sψ,t contains a club in bX ]ω,
and if J(bX) |= ¬ψ[tX ], then S¬ψ,t contains a club in [bX ]ω. In either case, we have
a contradiction. �

Now we put

〈ψ, t〉 ∈ T ⇔ Sψ,t contains a club in [b]ω.

It is easy to see that T is the theory with parameters of a countably iterable
b-premouse M with parameter a satisfying ϕ. �

Remark 19. We believe that with more work, one can show that simultaneous
reflection for pairs of stationary subsets of ω2 implies Mouse Reflection at ω2.

Definition 20. Let J be a (ν, a)-mouse operator, and let M be a b-premouse with
parameter a; then we say M is J-level-closed iff whenever η < ξ < ν and ξ is a
cardinal of M, then J(M|ξ) � M.

For any (ν, a)-mouse operator J and set b in its domain, there is a correspond-
ing minimal J-level-closed premouse LJ (b), obtained by concatenating extender
sequences. A condensation argument shows that LJ(b) is a bona fide b-premouse
with parameter a. It has ordinal height o(LJ(b)) = ν, and it is countably iterable.

If they are defined on the H(ν)-cone above a, then J�, J∗, and Jw
n are them-

selves (ν, a)-mouse operators. The reader should see [22] and [16] for background
information.

Definition 21. A (ν, a)-mouse operator J relativises well iff

(1) there is a formula θ(u, v, w, z) such that whenever b, c ∈ dom(J), b ∈ c, and
N is a transitive model of ZFC− such that J(c) ∈ N , then J(b) ∈ N and
J(b) is the unique x ∈ N such that N |= θ[x, a, b, J(c)], and

(2) if b ∈ dom(J) and η is a cutpoint of J(b), then J(J(b)|η) is not a proper
initial segment of J(b).

We shall only be dealing with operators that relativize well. Clause (2) is used
in the proof of

Lemma 22. Suppose that J is a (ν, a)-mouse operator that relativises well; then
for all b ∈ dom(J), J(b) is ν-iterable.

Proof. We show that J(b) is iterable by the strategy of choosing the unique cofinal
branch b of T such that Q(b, T )� J(M(T )). The usual reflection argument shows
that this works. �
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If J relativizes well, then a J-level-closed premouse that satisfies ZFC− is fully
closed under J . Because of this, we shall sometimes say “J-closed” when we mean
“J-level-closed”. Note that if n ≤ ω and the M �

n operator is total on H(ν), then
it is a (ν, 0)-mouse operator that relativizes well. Another very useful property of
the M �

n operator is that it determines itself on generic extensions, in the following
sense.

Definition 23. Let J be a (ν, a)-mouse operator. We say that J determines itself
on generic extensions iff for all b in the H(ω1)-cone over a, and all g that are
P-generic over J(b) for some P ∈ rud(b), we have that J(b)[g] = J(〈b, g〉).

Notice here that J(b)[g] can be regarded as a premouse over 〈b, g〉, because the
forcing is small with respect to extenders on the sequence of J(b). Definition 23
requires that so regarded, J(b)[g] is just J(〈b, g〉. It is clear that if the M �

n operator
is defined on H(ω1), then it determines itself on generic extensions.

It is shown in [21, section 4] that under AD, every mouse operator on H(ω1)
determines itself on generic extensions in some H(ω1)-cone.

Although we stated Definition 23 in terms of generic extensions of countable
models that exist in V , condensation leads to extendibility beyond V :

Lemma 24. Let a ∈ H(ω1), and let J = Jϕ be a first order (ν, a)-mouse operator,
where ν ≥ ω1 is regular. Suppose that J � H(ω1) relativizes well and determines
itself on generic extensions. Let h be V -generic over some partial order of size < ν.
Then V [h] satisfies for any c in the H(ν)-cone over a that there is a c-premouse
M with parameter a such that M |= ϕ, and M is ν-iterable.

Proof. Let θ be the formula witnessing that J relativises well. Let τ ∈ H(ν) be a
term such that c = τh. Let b be in the H(ν)V -cone over a with τ ∈ b.

The canonical re-arrangement of J(b)[h] is a 〈b, h〉-premouse with parameter a
satisfying ϕ. For if not, we can find in V a countable elementary submodel N of V
such that forcing over N yields g, where J̄(b̄)[g] does not re-arrange to a premouse
satisfying ϕ. But J̄ ⊆ J � H(ω1) because J condenses well. Since J determines
itself on generic extensions, we have a contradiction.

Let N be the canonical re-arrangement of J(b)[h]. Let θ be the formula witness-
ing that J � H(ω1) relativises well. Let M |= ZFC− be transitive, with b, h ∈ M . A
Lowenheim-Skolem argument such as that in the last paragraph shows that there is
a unique c-premouse M satisfying ϕ such that for some (equivalently all) transitive
S |= ZFC−, S |= θ[M, a, c,N ]. This is our desired M. �

If ν = ω1 in V [h], the premouse M in the conclusion of Lemma 24 may not be
ω1+1-iterable in V [h]. See Remark 15 above. It is, however, definable in V [h] from
J � V and c, uniformly over all V [h]. Thus we write

M = Jh(c)

for the c-premouse satisfying ϕ and obtained from J as above. If ν > ω1 in V [h],
we get

Corollary 25. Under the hypotheses of Lemma 24, if ν > ω1 in V [h], then Jh is
a (ν, a)-mouse operator extending J , and Jh relativizes well and determines itself
on generic extensions.

Definition 26. Let I be a presaturated ideal on ω1, and suppose 2ω1 = ω2. Let a ∈
H(ω1), and let J be a (ω3, a)-mouse operator that relativizes well and determines
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itself on generic extensions. We say that J is I-absolute iff whenever π : V →
Ult(V,G) is a generic embedding associated to some (I+,⊆)-generic G, and JG is
the extension of J to V [G] given by Corollary 25, then

π(J) � H(ω1)
V [G] = JG � H(ω1)

V [G].

If J is I-absolute, then in fact π(J) ⊆ JG in full, by a simple Lowenheim-Skolem
argument based on the condensation property of J .

Definition 27. Let J be a (ν, a)-mouse operator, and let b ∈ dom(J). Then

(1) J�(b) is the minimal active, countably iterable, J-level-closed b-premouse,
if there is one.

(2) J∗(b) = (J�)�(b), if it exists.
(3) For n ≥ 1, Jw

n (b) = MJ,�
n (b) is the minimal active, countably iterable,

J-level-closed b-premouse satisfying “there are n-Woodin cardinals above
o(b)”, if there is one. We put Jw(b) = Jw

1 (b).

If they are defined on the H(ν)-cone above a, then J�, J∗, and Jw
n are them-

selves (ν, a)-mouse operators. The reader should see [22] and [16] for background
information.

The successor step in a core model induction is the step from J-closure to Jw-
closure. We are now ready to execute it, in the case that our given J is a first order
mouse operator.

Theorem 28. Suppose that I is a presaturated ideal on ω1, 2
ω1 = ω2, and Mouse

Reflection holds at ω2. Let a ∈ H(ω1), and suppose that J is a first order (ω3, a)-
mouse operator that relativizes well, determines itself on generic extensions, and
is I-absolute. Then Jw is a first order (ω3, a)-mouse operator that relativizes well,
determines itself on generic extensions, and is I-absolute.

Proof. We first take a smaller step.

Claim 1. J� is an (ω3, a)-mouse operator that relativizes well, determines itself on
generic extensions, and is I-absolute.

Proof. Let G be V -generic over (I+,⊆), and

π : V → M = Ult(V,G)

be the generic embedding. We have that M is closed under ω-sequences in V [G],

π(ωV
1 ) = ωV

2 , π(ωV
3 ) = ωV

3 = ω
V [G]
2 , and

V [G] |= {α | π(α) = α} is stationary in ω2.

By Corollary 25, there is in V [G] a unique (ω
V [G]
2 , a)-mouse operator JG extend-

ing J . Because J is I-absolute, V [G] |= π(J) � H(ω1) = JG � H(ω1). It follows
from this that

π(J) ⊆ JG.

Take any c ∈ dom(π(J)); then c ∈ π(H(ω3)) ⊆ H(ω2)
V [G], so c ∈ dom(JG).

If JG(c) �= π(J)(c), then by a simple Skolem hull argument in V [G], using con-
densation for JG in V [G] and for π(J) in M , we get a countable b such that
JG(b) �= π(J)(b). This is a contradiction.
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Now let b be in the H(ω1)-cone over a of V . We wish to show that in V , J(b)�

exists and is countably iterable. This is basically a well-known result of Kunen, but
we sketch a proof for completeness. Setting θ = ωV

3 , we have in V [G]

π : LJ
θ (b) → LJ

θ (b),

with a stationary set of fixed points. We leave it to the reader to show that ωV
1

and ωV
2 are inaccessible cardinals in LJ (b). Let κ0 = ωV

1 , and let

U0 = {A ⊆ κ0 | A ∈ LJ (b) ∧ κ0 ∈ π(A)}.

Let μ = (κ+
0 )

LJ (b), and

M0 = (LJ
μ(b),∈, U0).

M0 is an amenable structure by an argument of Kunen. Let Mα be the α-th

iterate of M0 by U0 and its images. We show by induction on α < ω
V [G]
1 that Mα

has the form (LJ
μα

(b),∈, Uα), where μα is a cardinal of LJ
θ (b). At the same time

we define maps iβ,α : L
J
θ (b) → LJ

θ (b) extending the iteration map from Mβ to Mα,
and “realization maps”

πα : L
J
θ (b) → LJ

θ (b),

with π0 = π, such that for all β < α

πβ = πα ◦ iβ,α.

If α is a limit ordinal, then iβ,α is the direct limit map, and πα(iβ,α(x)) = πβ(x)
for all x. Note that πα embeds the direct limit into LJ

θ (b), and thus the direct limit
does indeed have the form LJ

θ (b), by the fact that J condenses well. We let

iα,α+1 : L
J
θ (b) → Ult(LJ

θ (b), Uα)

be the ultrapower map, and

πα+1(iα,α+1(f)(κα)) = πα(f)(κα),

where κα = crit(Uα) = i0,α(κ0). This works as long as Uα is the ultrafilter derived
from πα, that is, crit(πα) = κα, and for X ⊆ κα in LJ

θ (b),

(∗) X ∈ Uα ⇔ κα ∈ πα(X).

Again, the fact that J condenses well then yields that Ult(LJ
θ (b), Uα) = LJ

θ (b), as
desired.

We omit the proof that crit(πα) = κα. To see (∗), let ν < μ0, W = U0 ∩ LJ
ν (b),

and f : κ0 → P (κ0) ∩ LJ
ν (b). Let c, τ be such that π(c) = c, and for all ξ < κ0,

f(ξ) = τL
J
θ (b)[c](ξ) ∩ κ0. Then

LJ
θ (b) |= ∀ξ < κ0((τ [c](ξ) ∩ κ0 ∈ W ) ↔ κ0 ∈ τ [c](ξ)).

This fact is preserved by i0,α, and from that, we easily get (∗).
So for b in the H(ω1)-cone over a of V , V [G] |= J�(b) exists, and is ω2-iterable.

(The iterations that do not drop are linear, so we can go to ω
V [G]
2 . This uses Lemma

24 for iterations that do drop.) Let M = J�(b)V [G], and let h be V -generic over
Col(ω, ω2) and such that G ∈ V [h]. Our proof shows that M is definable in V [h]
from b and JV : it is the unique putative J(b)� that is linearly ω1-iterable by its last
extender in a way that moves the LJ(b) to itself. It follows that M ∈ V , and it is
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easy to see that it is countably iterable in V . So for b in the H(ω1) cone over a of
V , V |= J�(b) exists.

Now let b ∈ H(ω2)
V . Since b ∈ H(ω1)

M , we have an N such that M |= N =
π(J)�(b). Since J is I-absolute, this gives

V [G] |= N = (JG)�(b),

with N being ω2-iterable in V [G]. As in the last paragraph, this gives that N is
definable from JV and b in V Col(ω,ω2), so N ∈ V , and V |= N = J�(b).

Finally, J� can be extended to H(ω3)
V by Mouse Reflection at ω2.

It is easy to see that J� relativizes well, determines itself on generic extensions,
and is I-absolute. Indeed, the proof that it is I-absolute is part of our proof that
J� is defined on H(ω2)

V . �
Claim 2. J∗ is an (ω3, a)-mouse operator that relativizes well, determines itself on
generic extensions, and is I-absolute.

Proof. J∗ = (J�)�, so we can just use the proof of Claim 1, with J� replacing J . �
We are ready to prove that Jw is an (ω3, a)-mouse operator that relativizes well,

determines itself on generic extensions, and is I-absolute. First we show that it is
an (ω1, a)-mouse operator. The proof is parallel to that in the step from J to J�,
but now the core model theory is too involved to be reproduced, so we must just
quote it.

Let b be in the H(ω1)-cone over a. Let C ⊆ ω2 code 〈H(ω2), I〉. We work in the
model

N = LJ�

ω2
[C].

Because J∗(C) exists, N |= ZFC, and letting Ω be the critical point of the last
extender of J∗(C), Ω behaves in N enough like a measurable cardinal that the core
model theory of [18], relativised to J , goes through. Let Kc,J (b) be the result of
the J-relativized Kc-construction over b of length Ω. (See [16].3) It is enough to
show that Kc,J (b) reaches an active level P satisfying “there is a Woodin cardinal”.
That is because the first such P is countably iterable in N , and hence countably
J-iterable4 in V because H(ω2) ⊆ N . It follows that P can be re-arranged as a

countably iterable putative MJ,�
1 (b).

But if the Kc,J (b) construction does not reach such a P, then in N , KJ (b)
exists and has the basic properties of the unrelativized K from [18]. Since I is a
presaturated ideal in N , the argument of [18, section 7] leads to a contradiction.
This shows that Jw is an (ω1, a)-mouse operator. It is easy to see that it relativizes
well and determines itself on generic extensions, using those properties of J .

We now extend Jw to an I-absolute (ω2, a) operator. Let b be in the H(ω2)-cone
over a. Let

π : V → M = Ult(V,G)

3J is fed into the model being constructed as a model operator, meaning that if the current
model in the construction is P, and we are not adding an extender, then the next model is the
core of Q, where Q = J(P) unless some proper initial segment of J(P) projects strictly across
o(P), in which case Q is the first such initial segment of J(P). Strictly speaking, the levels of
Kc,J (b) are not b-premice, but hybrid b-premice relative to the model operator FJ , where FJ (P)
is the Q we just described. See [16].

4This means that the iterations move FJ correctly. See [16].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4454 JOHN STEEL AND STUART ZOBLE

be the generic embedding associated to G ⊆ I+ and let P be such that

M |= P = M
π(J),�
1 (b).

Claim. P is in V , and countably iterable in V .

Proof. Let h be V -generic over Col(ω, ω2), and such thatG ∈ V [h]. In V [h], P is ω1-
iterable by the following strategy Σ: pick the unique cofinal branch b of T such that
Q(b, T ) � (J�)h(M(T )). To see that Σ works, note that it works in V [G], because
M and V [G] have the same reals, and π(J) ⊆ JG. But H(ω2)

V [G][h] = H(ω1)
V [h],

and (J�)G determines (J�)h on H(ω1)
V [h]. A simple Lowenheim Skolem argument

for the forcing from V [G] to V [h] shows that if Σ fails in V [h], it fails in V [G]. Thus
Σ works in V [h]. Note that Σ is definable from J�, which is in V .

If Q,Λ have in V [h] the properties of P,Σ just described, then working in
J∗(〈P,Q〉), where both P and Q are ω1 + 1-iterable, we can compare them. This
shows Q = P. It follows that P is definable in V [h] from b and (J∗)V , and thus
P ∈ V by the homogeneity of Col(ω, ω2). For a similar reason, Σ � V ∈ V and
witnesses that P is countably iterable (in fact ω3-iterable) in V . �

Thus Jw extends to an (ω2, a)-mouse operator, and our proof showed that it is
I-absolute. By Mouse Reflection at ω2, J

w extends to an (ω3, a)-mouse operator.
The extension relativises well and determines itself on generic extensions, because
these properties depend only on J � H(ω1. It is I-absolute, because this property
depends only on J � H(ω2).

This completes the proof of Theorem 28. �
We have at once

Corollary 29. Suppose there is a presaturated ideal on ω1, and 2ω1 = ω2, and
Mouse Reflection holds at ω2; then for all n < ω and all b ∈ H(ω3), M

�
n(b) exists

and is countably iterable. Thus PD holds, and continues to hold in V [H] whenever
H is V -generic for a poset of size ≤ ω2.

4. An aside on 2ω1 = ω2

We digress briefly in order to prove the following theorem, due to Woodin and
implicit in [25] (see Thm. 9.82 for example).

Lemma 30. Assume WRP(2)(ω2) and NS saturated; then

2ω = 2ω1 = δ∼
1
2 = ω2.

Proof. A theorem of Todorcevic (see Thm 6.4 of [6]) gives 2ω ≤ ω2 under WRP(ω2).
The idea is that there is always an injection from 2ω into any club subset C of [ω2]

ω,
and under WRP(ω2) there is such a club of size ω2, namely

C =
⋃

δ<ω2

Cδ,

where each Cδ is a club of size ω1 in [δ]ω. Now, NS saturated gives closure of
P (ω1) under the dagger operation and WRP(2)(ω2) lifts this closure to P (ω2) as
in Lemma 18. For B ⊆ ω2, we write L[B,U ] for the minimal model with one
measurable cardinal over B described by B†. We construct a function B : ω2 →
P (ω1) as follows. Let B(0) ⊂ ω1 be such that ω

L[B]
1 = ω1. Given B � γ, let

(Xξ | ξ < ω1) enumerate those nonstationary sets X ∈ L[B � γ, U ] which are

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINACY FROM STRONG REFLECTION 4455

stationary in L[B � γ, U ]. Let B(γ) code a sequence of clubs disjoint from the Xξ

as well as a surjection from ω1 to γ. Every subset of ω2 in the final L[B,U ] is in
L[B � γ, U ] for some γ < ω2, so L[B,U ] thinks that NS is saturated and computes
ω2 correctly. Since L[B,U ] has a measurable cardinal, it follows from 3.17 of [25]
that δ∼

1
2 = ω2 in L[B,U ], and thus 2ω = ω2 in V , and we are left to show that

2ω1 ≤ ω2.
For this, let G be V -generic over (NS,⊆), and let j : V → M � Ult(V,G) be the

generic embedding. We have ωV
2 = ω

V [G]
1 and ωV

3 = ω
V [G]
2 by the ω2-c.c. Thus

j(ωV
2 ) = ωM

2 ≤ ω
V [G]
2 = ωV

3 .

But j is continuous at ω2, so

j(ωV
2 ) < ωV

3 .

But M |= 2ω = ω2, and M contains all the reals of V [G], so CH holds in V [G].
On the other hand, if V thinks that f is an injection of ω3 into P (ω1), then V [G]
thinks that f enumerates ω2 distinct subsets of ωV

1 , contrary to CH. �

The hypothesis that 2ω ≤ ω2 is not needed for Corollary 29, and probably not
for Theorem 28, though we have not checked the latter carefully. The following
little lemma lets us drop the hypothesis.

Lemma 31. Suppose I is a presaturated ideal on ω1 and J is an (ω3, a)-mouse
operator, where a ∈ H(ω2). Suppose that J� is an (ω2, a)-mouse operator. Then
there is a B ⊂ ω2 such that

(1) H(ω2)
LJ (B) is fully elementary in H(ω2),

(2) Ī = I ∩ LJ (B) ∈ LJ (B), and
(3) LJ (B) |= Ī is a presaturated ideal on ω1.

Proof. We inductively fold all of the necessary data into B, which we regard as a

function from ω2 to P (ω1). Let B(0) code a, and be such that ω
L[B(0)]
1 = ω1. Let

δ < ω2, and suppose B � δ has been defined. We let B(δ) code Wδ and Iδ, where
Iδ in turn codes

I ∩ J#(B � δ)
and Wδ ∈ [P (ω1)]

ω1 has the following property: if c ∈ M#(B � δ) and φ(x, y) is a
formula of the language of set theory so that

H(ω2)
V |= φ[c, d]

for some d, then there is such a d coded (in some simple way) by an element of Wδ.
Finally, we let

Ī =
⋃

δ < ω2Iδ.

It is easy to check (1)-(3) of the lemma. �

5. Iα and Cohen forcing

In this section, we discuss our resemblance hypothesis Iα, and we prove some
lemmas on Cohen forcing over models of AD that are relevant to its formulation.
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5.1. The role of Iα. In Section 3, we proved PD by a “cycling” argument, first
closing H(ω1) under a mouse operator, then lifting this closure to H(ω2) and finally
to H(ω3). One idea of [26] is that the main obstacle to continuing this “cycling”
argument through the levels of L(R) is the lack of homogeneity of the forcing
P (ω1)/NS. In order to make the H(ω1) to H(ω2) step, we need at least enough
homogeneity so that for J the current mouse operator on H(ω1)

V , π(J) � H(ω2)
V

is independent of the NS-generic embedding π. J will be definable at some level
of L(R)V , and πG(J) at some level of L(R)V [G]. This makes it natural to relate
the L(R) of the homogeneous extension by Col(ω, ω1) with that of an extension by
P (ω1)/NS×Col(ω, ω1). This latter model V P (ω1)/NS×Col(ω,ω1) is a Cohen extension
of V P (ω1)/NS , and a ccc extension of V Col(ω,ω1) if NS is saturated. The author of
[26] believed that the existence of an embedding between the L(R) of these models

together with our hypotheses would yield ADL(R). That is, he conjectured the
following weakening of our main theorem:

Assume WRP(2)(ω2) and NS are saturated. Suppose that whenever
G ⊂ P (ω1)/NS is V -generic and g ⊂ Col(ω, ω1) is V [G]-generic
there is an embedding

π̄ : L(R)V [g] → L(R)V [G][g]

which is Σ1 and fixes ordinals. Then AD holds in L(R).

On the other hand, it was also known that if the induction were to succeed in
proving AD in L(R), and that this persists after collapsing ω2, then we would have
such an embedding. This follows easily from results of Foreman and Magidor ([3])
and Woodin ([2], [25]) that we shall use later in a similar way to prove Iα. We
therefore give the argument here. Let us first recall the Foreman-Magidor results.

Definition 32 ([3]). A partial ordering P is reasonable iff for all ordinals α, [α]ω∩V
is stationary in V P.

All proper posets are reasonable, and thus all ccc posets are reasonable.

Definition 33 ([2]). A set B of reals is κ-universally Baire just in case there are
trees T and U on some ω × γ such that p[T ] = B, and whenever P has cardinality
< κ, then V P |= p[T ] = R \ p[U ]. We call T and U κ-absolute complements in this
situation.

Of course, we can speak of κ-universally Baire relations on reals as well. If B is
κ universally Baire, T, U are κ-absolute complements such that p[T ] = B, and G is
V -generic for a poset of size < κ, then we write BG for p[T ] ∩ V [G]. The notation
is justified because if T ∗, U∗ is another such complementing pair, then p[T ] = p[T ∗]
holds in V [G]. Foreman and Magidor note that if B is an equivalence relation on
R, then BG is an equivalence relation on RV [G] ([3, 3.3]). It is also easy to see
that if B is a prewellorder of R, then BG is a prewellorder of RV [G]. Foreman and
Magidor show

Theorem 34 ([3, 3.4]). Let B be a κ-universally Baire prewellorder of R, and let
G be V generic over a reasonable poset of size < κ. Then for every x ∈ RV [G] there
is a y ∈ RV such that BG(x, y) and BG(y, x).

That is, every BG-equivalence class has a representative in V . In fact, [3, 3.4]
shows that if B is a thin equivalence relation, then every BG equivalence class has
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a representative in B. One can show that the equivalence relation generated by a
prewellorder with the Baire property is thin.

Theorem 35. Assume NS saturated and WRP(2)(ω2). Assume ADL(R) holds in
V [g] whenever g ⊂ Col(ω, ω1) is V -generic. Suppose G and g are the factors of a
generic filter on P (ω1)/NS×Col(ω, ω1). Then there is a fully elementary embedding

π : L(R)V [g] → L(R)V [G][g],

and any such embedding satisfies π � θL(R) = id. Moreover, ADL(R) holds in V and
in the universe after collapsing ω2.

Proof. By Lemma 30, we have 2ω1 = ω2. Thus from the perspective of V [g] the
algebra B = (P (ω1)/NS)V has size ω1.

Claim 1. V [g] |= (P (ω1)/NS)V has the countable chain condition.

Proof. Otherwise there is a condition p ∈ Col(ω, ω1) which forces that some ḟ
enumerates an antichain of length ωV

2 . On cardinality grounds there must be a

condition q ≤ p which decides ω2 of the values of ḟ , a contradiction since two of
these values must therefore be compatible by saturation of NS in V . �

Now, since 2ω1 = ω2 and P (ω2) is closed under sharps, we have R# in V [g].
By 9.83 of [25] we then have that R# exists and L(R) |= AD in the universe after
collapsing ω2. This uses WRP(2)(ω2). Now we may assume there is h ⊂ Col(ω, ω2)

which is V [G][g] generic and so that V [G][g][h] = V [h̄] for some h̄ ⊂ Col(ω, ω2).
The argument of 5.2 of [2] now shows that there are definable trees S, T in V [g]
such that p[S] = R# and p[T ] = R \R# in V [h̄]. These trees belong to V, V [g], and
V [G][g] by homogeneity, and it can be argued that p[S] = R# in the sense of each
model. Thus there is a fully elementary embedding5

π : L(R)V [g] → L(R)V [G][g].

We also have that from the perspective of V [g], every set of reals in L(R) is ω+
1 -

Universally Baire and hence B-Universally Baire as 2ω1 = ω2.
Now suppose π is such an embedding and fix α less than the θ of L(R)V [g]. There

is a prewellordering �∈ L(R)V [g] (with associated equivalence relation �) of length
α in V [g], together with S, T such that

(1) p[S] =� in V [g],
(2) p[S] = π(�) in V [G][g],
(3) p[S] = R \ p[T ] in V [g][G].

Since π(α) is the length of π(�), we must show that p[S]V [G][g] has length α. This
follows from the Foreman-Magidor theorem, Theorem 34. �

The preceding remarks suggest that we add the existence of approximations
to such an embedding to the induction hypothesis. This was how [26] came to
formulate Iα. In the next section we shall use W ∗

α and Iα to get Iα+ω. If α is not in
the range of πNS , this will easily give W ∗

α+ω. Otherwise the arguments of Section
3 will produce the required witnessing structures.

5The argument of this paragraph can be recast using mice; essentially we are crossing the weak
gap (δ∼

2
1, θ)

L(R), and we can do it using the techniques of Lemma 66.
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5.2. L(R) and Cohen forcing. Recall that the ordinal height of the transitive
structure Jα(R) is ωα, and that the new sets of reals appearing in Jα+1(R) are
precisely the new sets which are first order definable over Jα(R). That is,

P (R) ∩ Jα+1(R) = P (R) ∩ Σ∼
1
ω(Jα(R)).

We say that α begins a gap if there is no β < α with Jβ(R) a Σ1 elementary (with
real parameters) submodel of Jα(R).

Lemma 36. Suppose h ⊂ Col(ω, κ) is V -generic and α begins a gap in L(R)V [h].
Suppose Jα(R)

V [h] |= AD; then there is a unique pair α0, ψ such that α0 begins a
gap in L(R), and

ψ : Jα0
(R) → Jα(R)

V [h]

is Σ1 elementary.

Proof. There are uniformly Σ1 definable functions

fα : [ωα]<ω × R → Jα(R)

which are surjective. Using these we define a Σ1 function F as follows. Given a
real x, decode a sequence (x0, ..., xn) of reals and a real y and suppose there is a
finite sequence t such that

Jα(R) |= φy(0)((x0, ..., xn), fα(t, ŷ)),

where ŷ(n) = y(n + 1) and (φk | k < ω) enumerates Σ1 formulae with two free
variables. Let t∗ be the Brouwer-Kleene least such t and set F (x) = fα(t

∗, ŷ).
F is a uniformly Σ1 partial map, and if α begins a gap, then F as defined over
Jα(R) is surjective. Let M = F [RV ], where F is computed in Jα(R) of V [g]. By

the homogeneity of Col(ω, κ), R ∩ M = RV . Because (Σ
Jα(R)
1 )V [h] has the scale

property, M ≺Σ1
Jα(R)

V [h]. It follows that M � Jα0
(R)V for some ordinal α0, and

the inverse of the collapse is the desired map ψ. �

Lemma 37. Suppose α is an inadmissible limit ordinal which begins a gap.

(1) There is a surjective function f : R → Jα(R) which is Δ1 definable over
Jα(R) from a real z0.

(2) If A ∈ P (R) ∩ Jα+1(R), then A is projective in a set D ∈ P (R) which is
Δ1 definable over Jα(R) from a real.

(3) If Δ∼2k+1(Jα(R)) determinacy holds, then the pointclasses

Π∼2k+2(Jα(R) and Σ∼
Jα(R)
2k+3

have the scale property.

Proof. Inadmissibility of Jα(R) together with a Skolem hull argument gives a Σ∼
Jα(R)
1

map g : R → ωα which is cofinal. Using the uniform Σ1 Skolem function, this can
be turned into the desired map f . For (2) note that every such A can be obtained
from a Δ1 set of the form

D = {(x, x1, ..., xk) ∈ Rk+1 | Jα(R) |= φ(x, f(x1), ..., f(xk), f(r))}

by taking projections and complements, for some Σ0 formula φ and real r. Part
(3) follows from the second periodicity theorem. See [23] for further details. �
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Let g × G be V -generic over the product Col(ω, ω1) × P (ω1)/NS. In order
to relate L(R)V [g] to L(R)V [g][G], we must at the same time relate L(R)V [G] to
L(R)V [G][g]. Now V [G][g] comes from V [G] by adding just one Cohen real. The
following lemma, due to Woodin and H. Friedman, establishes the level-by-level
relationship between the two L(R)’s that we need. See [8] for other results in this
vein.

Lemma 38. Suppose Jα(R) |= AD and α begins a gap. Suppose g ⊂ Col(ω, ω) is
Cohen generic over V . Then there exists a unique Σ1 elementary embedding

j : Jα(R) → Jα(R)
V [g]

such that

j � α = identity.

Furthermore, if all Σ∼
Jα(R)
1 sets of reals have the Baire property, then j is Σ2 ele-

mentary.

Proof. The reader of [8, section 5] will easily adapt it so as to obtain this localiza-
tion. Nevertheless, we sketch a proof for the sake of completeness.

We think of the reals as ωω. For p ∈ ω<ω let Np denote the neighborhood
determined by p. Let B denote the σ-algebra of sets of reals in L(R) which have
the Baire property. Let B denote the quotient algebra B/I where I is the ideal of
meager sets. Clearly the map

π : Col(ω, ω) → B

defined by π(p) = [Np] is a dense embedding, so if g ⊂ Col(ω, ω) is V -generic, then
g induces an ultrafilter Ug on B. That is, a set A is in Ug if and only if A ∩Np is
comeager in Np for some p ∈ g.

In V [g] we form the ultrapower Ult(Jα(R), Ug) using functions belonging to
Jα(R). We may assume that these functions are total with domain R. We first

show that Ult(Jα(R), Ug) is well-founded. Assume a condition p forces that ([ḟn])
is a decreasing sequence in the ultrapower. For s ∈ ω<ω define a condition ps ∈
Col(ω, ω), a set As, and a function fs all in Jα(R) such that

(a) p ⊆ p∅,
(b) {ps�n | n ∈ ω} is a maximal antichain below ps,
(c) As ⊂ Ns is comeager in Ns,

(d) ps �Col(ω,ω) ḟlh(s) = fs,
(e) s ⊂ t,s �= t, and x ∈ At implies ft(x) ∈ fs(x).

By the Baire Category Theorem
⋂

n<ω

⋃

lh(s)=n

As �= ∅,

so there are x, h ∈ ωω so that x ∈ Ah�n for every n < ω, and hence {fh�n(x) | n < ω}
is an ∈-decreasing sequence, giving the desired contradiction. Thus the ultrapower
has a transitivization M .

Los’ theorem for Σ0 formulae comes from almost-everywhere uniformization:

Claim. Suppose A ⊂ R × R and A ∈ Jα(R). Then there is a continuous function
f and a comeager set D ⊆ dom(f) such that if x ∈ D and there is y such that
(x, y) ∈ A, then (x, f(x)) ∈ A.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4460 JOHN STEEL AND STUART ZOBLE

This standard result is proved by unfolding the Banach-Mazur game. It yields

Claim. For any functions f1, ..., fn ∈ Jα(R) and the Σ0 formula φ,

Ult(Jα(R), Ug) |= φ([f1], ..., [fn])

if and only if
{r ∈ R | Jα(R) |= φ(f1(r), ..., fn(r))} ∈ Ug.

This follows by the usual induction. For the existential step, we may assume that
β < α begins a gap and Jβ(R) |= ∃Y φ(Y, f(x)), for all x in some set B ∈ Ug. Let
F ∈ Jα(R) map R onto Jβ(R). Let A denote the set of (x, y) such that φ(F (y), f(x))
holds in Jβ(R), let h

∗ uniformize this A as in the claim, and set h(x) = F (h∗(x)).
By induction, φ([h], [f ]) holds in the ultrapower, as desired.

It follows at once that the ultrapower map j : Jα(R) → M is Σ1 elementary.
We leave it to the reader to check that the standard terms for reals correspond to
continuous functions on R, and thus RM = RV [g]. It follows that M = Jγ(R)

V [g],
for some γ.

In Jα(R) any well-ordered union of meager sets is meager. It follows that for
any ordinal η and function f : R → η in Jα(R) there is a dense set D ⊂ Col(ω, ω)
such that f is constant on a comeager subset of Np for any p ∈ D. It follows that
γ = α and that j � ωα is the identity.

Finally, suppose all Σ∼
Jα(R)
1 sets of reals have the Baire property. We show that

Los’ theorem holds for Σ1 formulae, so that j is Σ2 elementary, as desired. So
suppose φ is Σ1, and

Jα(R) |= ∃Y φ(Y, f(x)),

for comeager many x in Np, where p ∈ g. Say this holds for all x ∈ B, where B
is Borel and comeager in Np. Let us assume α is a limit ordinal for simplicity;
otherwise we use Jensen’s S-hierarchy. For β < α, put

x ∈ Bβ ⇔ Jβ(R) |= ∃Y φ(Y, f(x)).

The prewellordering x1 ≤ x2 iff μβ(x1 ∈ Bβ) ≤ μβ(x2 ∈ Bβ) is Σ1 over Jα(R),
so it has the Baire property, and thus by Kuratowski-Ulam some Bβ is nonmeager
in Np, and thus comeager on some Nq with p ⊆ q. By density, there is such a
β, q with q ∈ g. We can now find the desired witness function h for φ, f so that
h ∈ Jβ+1(R). �

The following lemma shows one way we shall use these results.

Lemma 39. Assume Iα holds, and that α begins a gap in V Col(ω,ω1). Let h × H
be Col(ω, ω1)× (P (ω1)/NS)V -generic over V , and suppose V [h] |= W ∗

α. Then

(1) there is a unique Σ1 embedding from Jα(R)
V [H] to Jα(R)

V [H][h] that fixes
all ordinals,

(2) there is a unique ordinal α0 that begins a gap in V , and Σ1 embedding from
Jα0

(R)V to Jα(R)
V [h].

Thus AD holds in Jα0
(R)V , in Jα(R)

V [h], in Jα(R)
V [H], and in Jα(R)

V [H][h].

Proof. We have AD in Jα(R)
V [h] and Jα(R)

V [H][h] by Lemma 10. Moreover, the
embedding given by Iα shows that α begins a gap in V [H][h].

V [H][h] is a Col(ω, ω)-extension of V [H], so Lemma 36 gives a unique Σ1 em-
bedding from Jγ(R)

V [H] to Jα(R)
V [H][h], for some γ that begins a gap in V [H].
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But then AD holds in Jγ(R)
V [H], so we can apply our Lemma 38 to see that γ = α,

and the embedding is the identity on the ordinals.
Finally, α0 and the embedding of (2) are just what we get when we apply Lemma

36 to the Col(ω, ω1)-extension from V to V [h]. �

5.3. The Baire property for Σ∼
Jα(R)
1 . We present a sufficient condition for the

pointclass Γ = Σ∼
Jα(R)
1 to have the Baire property. The condition is implicit in

Solovay’s theorems on the Baire property for Σ1
2 sets. We assume that α begins a

gap, Jα(R) |= AD, and cof(α) > ω.6 We define

CΓ(x) = R ∩OD<α
x ,

that is, for reals x, y we put y ∈ CΓ(x) if there is β < α such that y is ordinal
definable over Jβ(R) from the parameter x.7 Similarly,

CΓ(a) = P (a) ∩OD
Jα(R)
a∪{a}

for a countable transitive set a. Because we have Wα,

CΓ(a) = LpΓ(a)

is the result of stacking all mice projecting to a and having ω1-iteration strategies
belonging to Jα(R). A transitive set M is Γ-closed if a ∈ M implies CΓ(a) ∈ M .
The model LΓ[x] is the minimal transitive model of height ω1 which contains x and
is Γ-closed. Finally, we say that ω1 is Γ-inaccessible to reals iff CΓ(x) is countable
for all reals x, or equivalently,

ω
LΓ[x]
1 < ω1

for all reals x.
The classical argument of Solovay in the case Γ = Σ1

2 yields

Lemma 40. Assume Jα(R) |= AD, α begins a gap, cof(α) > ω and ω1 is Γ-

inaccessible to reals where Γ = Σ∼
Jα(R)
1 ∩ P (R). Then

(1) Γ has the Baire property.
(2) ω1 is Γ-inaccessible to reals in V [g] whenever g is Cohen generic over V .

Proof. Let A be a set in Γ. Let x be a real such that A is Σ1 definable over Jα(R)
from x. Let N be a rank initial segment of LΓ[x] containing its reals. There are
comeager many Cohen generics over N , so if each one lands in R\A, we’re finished.
Assume therefore that there is g0 which is Cohen generic over N with g0 ∈ A. Let
β < α be least such that Jβ(R) |= g0 ∈ A. Let β1 = β + ω and let T be the tree of
the scale on the universal Σ1(Jβ1

(R)) set. Note that N is a rank initial segment of
L[T,N ]. Now assume toward a contradiction that there exists a sequence of open
dense sets Dn ⊆ R such that

g ∈
⋂

n∈ω

Dn ⇒ g ∈ (¬A)Jβ(R).

Then for any real z coding N , the model Jβ1
(R) satisfies the sentence by asserting

the existence of g0, {Dn | n ∈ ω} and β satisfying

(1) g0 is Cohen generic over the model coded by z,

6In the case where cof(α) = ω or α is a successor, the fact that the class of sets with the Baire
property is closed under countable unions is enough for us.

7If Jα(R) is admissible, then CΓ is the largest thin Γ set, but we don’t know whether this is
true in general.
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(2) g0 ∈ AJβ(R),
(3) g ∈

⋂
n∈ω Dn ⇒ g ∈ (¬A)Jβ(R).

This is a Σ1 sentence, and so it holds in L[T, z] by absoluteness. Thus for every g
which is L[T, z]-generic, g ∈ (¬A)Jβ(R). Now, g0 is generic over L[T,N ]. Let G be
generic over L[T,N ][g0] for Col(ω,N). Then g0 is generic over L[T,N ][G]. But G
codes N , which is a contradiction. Thus by the Baire property there is a condition
p such that g ∈ AJβ(R) for comeager many g below p. Let O be the union of all
neighborhoods which have this property. We claim that A\O is meager. Otherwise
there is an LΓ[x, y] generic g which lands in A \ O where y codes the open set O.
But A \ O is Σ1, so the preceding analysis produces a q such that comeager many
g below q land in A \ O, a contradiction as Nq ⊆ O. For part (2) note that we

interpret Γ in V [g] as (Σ1(Jα(R)) ∩ P (R))V [g]. Let τ be a standard term for a
real. It suffices to show that CΓ(τg) is countable. Assume otherwise. Thus we may
assume that there is a single Σ1 formula ψ(x, y, z) and a condition p which forces
that {rη | η < ω1} is a distinct sequence of reals where

rη = {n < ω | Jα(R)V [g] |= ψ(η, n, τg)}.

Let z be a real coding τ and let φ(η, q, n) be the Σ1 formula which asserts that
q ≤ p, z codes a term τ and

q �Col(ω,ω) ψ(η, n, τ ).

Setting r∗η = f [{(q, n) | φ(η, q, n)}] where f : Col(ω, ω)×ω → ω is a fixed bijection,
we see that each r∗η belongs to CΓ(z) and that they are distinct, contradicting our
hypotheses. �

6. The induction step in the inadmissible case

We now handle the induction step in the uncountable cofinality, inadmissible
case. This was the case labelled (2)(b) in the cases following Definition 11. The
countable cofinality inadmissible case (2)(a) is similar but simpler, so we omit it.
The general successor case (1) involves no ideas beyond those in Section 3, so again,
we omit it.

We assume for the rest of this section that NS is saturated, and WRP(2)(ω2)
holds. We fix for the remainder of the section an α such that Iα holds, and for
some (equivalently all) g generic over Col(ω, ω1):

(1) V [g] |= W ∗
α and

(2) V [g] |= α has uncountable cofinality and Jα(R) is inadmissible.

Our goal is to prove that Iα+1 holds and that W ∗
α+1 holds in V [g].

6.1. The map πNS � α0. If G is any V -generic over P (ω1)/NS, then we let

πG : V → Ult(V,G)

be the canonical embedding into the generic ultrapower. One byproduct of the
proof of our main theorem is that πG � ΘL(R) is independent of G. As we go along,
we are showing that πG(γ) is independent of G for certain γ. In particular, for any
Col(ω, ω1)-generic g, let α0 be the ordinal beginning a gap in V that is given by
Lemma 39, and

τ g : Jα0
(R)V → Jα(R)

V [g]
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the unique Σ1 map. By homogeneity, τ g � (R × ωα0) is independent of g, and so
we may omit the superscript g when we are only concerned with this part of τg.
Of course, Jα0

(R) is the Σ1 hull of (R× ωα0). We have

Lemma 41. Let G be P (ω1)/NS-generic over V . Then

(a) πG � ωα0 = τ � ωα0,
(b) πG(α0) ≥ α, and
(c) if πG(α0) = α, then for all P (ω1)/NS-generic H, πH(α0) = α.

Proof. Let g be such that g ×G is Col(ω, ω1)× P (ω1)/NS-generic. Let π witness
Iα, and let

ψ : Jα(R)
V [G] → Jα(R)

V [G][g]

be the Cohen ultrapower map. ψ is Σ1 elementary and the identity on ordinals.
We then have

τ g = π−1 ◦ ψ ◦ (πH � Jα0
(R)V ),

because both sides yield Σ1 embeddings of Jα0
(R)V into Jα0

(R)V [h]. Since ψ and
π are the identity on ordinals, we have (a).

For (b), let β be least such that πG(β) ≥ α, and suppose α0 < β toward contra-
diction. Let γ end the gap in V that begins with α0. If β ≤ γ, then [πG(α0), πG(β)]
is a gap in V [G] by the elementarity of πG, and α is inside it, so α does not
begin a gap in V [G], a contradiction. Suppose γ < β. Let x be a real in V
and ϕ(v) a Σ1 formula such that Jγ+1(R)

V |= ϕ[x], but Jα0
(R) �|= ϕ[x]. Using

τ g = π−1 ◦ ψ ◦ (πG � Jα0
(R)V ), we see that Jα(R)

V [g] |= ϕ[x]. But this contradicts
the elementarity of τg.

For (c), we show first that all (Σ∼
Jα(R)
1 )V [G] sets have the Baire property. Let

Γ = (Σ
Jα(R)
1 )V [G]. We wish to show that in V [G], ω1 is Γ-inaccessible to reals.

Letting Γ0 = (Σ
Jα0

(R)
1 )V , it is enough to show that in V , ω1 is Γ0-inaccessible to

reals. If not, there is in V a real x such that every countable ordinal is the order
type of a wellorder in CΓ0

(x). Applying πG to this fact, we have y ∈ CΓ(x)
V [G]

coding a wellorder of ω of order type ωV
1 . Applying π−1 ◦ ψ to this fact, we see

that y ∈ V [g], and y is ordinal definable in V [g] from x. But then y ∈ V , a
contradiction. �

Having shown πG(γ) independent of G, we may use πNS(γ) to denote the com-
mon value of all πG(γ). So at the moment πNS � α0 is determined, and it is the
Skolem hull map τ .

Let us say that a pointclass has the Baire property just in case all sets of reals
belonging to it have the Baire property. Our proof of the last lemma gives

Lemma 42. Let g ×G be Col(ω, ω1)× P (ω1)/NS-generic. Then

(1) if πH(α0) = α, then (Σ∼
Jα0

(R)
1 )V has the Baire property and

(2) in any case, each of the pointclasses

(a) (Σ∼
Jα(R)
1 )V [G],

(b) (Σ∼
Jα(R)
1 )V [G][g], and

(c) (Σ∼
Jα(R)
1 )V [g]

has the Baire property in its respective model.
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Proof. We showed (1) in proving the last lemma.
(2)(a) follows from (1) in the case where πG(α0) = α by elementarity. But if

πG(α0) > α, then AD in Jα0
(R)V gives us AD, and hence the Baire property, for

all sets in Jα+1(R)
V [G]. So this gives (2)(a) in any case.

We get (2)(b) from (2)(a) and part (2) of Lemma 40.
For (2)(c), we show that ω1 is Γ-inaccessible to reals in V [g], where

Γ = (Σ
Jα(R)
1 )V [g].

If not, there is a real x ∈ V [g] such that every countable ordinal has a counting
that is OD(x) over some Jβ(R)

V [g], where β < α. Applying πg, we have that ω1 is

not (Σ
Jα(R)
1 )V [G][g]-inaccessible to reals in V [G][g], contrary to (2)(b). �

6.2. The plan. The following diagram helps illustrate the steps of our proof:

Jα0
(R)

τg
��

πG

�� ����
���

���
���

�
Jα(R)

V [g]

π

��
Jα(R)

V [G]

ψ
�� Jα(R)V [G][g]

j

��
Jα∗(R)V [G][g][h]

Here g × G is an arbitrary Col(ω, ω1) × P (ω1)/NS-generic, and h ⊂ Col(ω, ωV
2 )

is V [G][g]-generic. Of course, V [G][g][h] could be reorganized as V [h̄] for another
Col(ω, ωV

2 )-generic. Jα(R)
V [G] and Jα(R)

V [G][g] are connected via the Cohen ul-
trapower map ψ. The map π is given by Iα, and τ g is the Σ1 hull map of Lemma
36. It may be that α0 is a discontinuity point of πG, so in general, πG is only Σ1

elementary as a map from Jα0
(R) to Jα(R)

V [G]. If πG(α0) = α, then the map is
fully elementary.

Our first burden is to define an appropriate level α∗ of the L(R) of V Col(ω,ω2)

and to construct j. We shall show that α∗ and j � ωα are independent of g,G and
h, using the fact that α has a “name” provided by any witness to its inadmissibility
in V [g]. We will use j and α∗ to show that π is in fact Σ2 elementary.

The proof then breaks into cases. If πG(α0) = α for some (equivalently all) G,
then α0 is inadmissible and begins a gap in L(R)V , so we have from [22] a natural
mouse operator J on H(ω1)

V coding up Σ1 truth over Jα0
(R). We can extend J to

H(ω2) using πG and π; at this point we use j, and the fact that π is Σ2 elementary,
to see that πG(J) � H(ω2)

V is independent of G. By Mouse Reflection, J extends
to H(ω3)

V . We can now use the core model theory of Theorem 28 to get the mice
needed for W ∗

α+1 in V [g], and to prove Iα+1.
If πG(α0) > α, then since V |= W ∗

α0
, V [G] |= W ∗

α+1, so V [G][g] |= W ∗
α+1 by

the elementarity of the Cohen ultrapower. So we don’t need core model theory
to get the new mice, but we do need to get them in V [g], rather than in V [G][g].
This is done with an induction that shows at the same time that π and j are fully
elementary.

6.3. Lifting Jα(R)
V [G][g] to V col(ω,ω2).

Lemma 43. There is a function l : ω1 → (α0 + 1) such that whenever G is
P (ω1)/NS-generic over V , then α = [l]G.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINACY FROM STRONG REFLECTION 4465

Proof. Let {Sξ, lξ | ξ < ω1} be such that {Sξ | ξ < ω1} is a maximal antichain
in P (ω1)/NS, lξ : ω1 → (α0 + 1), and Sξ forces lξ to represent α in the generic
ultrapower. Define l(η) = lξ(η), where ξ is least such that η ∈ Sξ. It’s easy to see
that l is as desired. �

We fix l as in the lemma. By Lemma 42, we may assume that for all β, Σ∼
Jl(β)(R)
1

has the Baire property.
Let F be the uniform Σ1 function for levels of L(R), as described in the proof of

Lemma 36.
We use “∀∗σ” to abbreviate “for a club of σ ∈ [ω2]

ω”. If σ ∈ [ω2]
ω, then otp(σ)

is the image of σ under transitive collapse, that is, its order type. For a ⊆ σ<ω, aσ

is the image of a under the collapse of σ.

Lemma 44. There is a term for an ordinal α∗ such that V Col(ω,ω2) |= α∗ begins a
gap, and for any p ∈ Col(ω, ω2), the standard term for a real τ , and the Σ1 formula
φ, the following are equivalent:

(1) p �Col(ω,ω2) Jα∗(R) |= φ(F (τ )),
(2) ∀∗σ pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F (τσ)).

Proof. We define a name for a structure

Ṁ = (Ṁ, ∈̇M, =̇M)

as follows. For p ∈ Col(ω, ω2) and τ, τ̄ standard terms for reals are

(a) (p, τ ) ∈ Ṁ if and only if

∀∗σ pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= F (τσ) exists,

(b) (p, (τ, τ̄)) ∈ ∈̇M if and only if

∀∗σ pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= F (τσ) ∈ F (τ̄σ),

(c) (p, (τ, τ̄)) ∈ =̇M if and only if

∀∗σ pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= F (τσ) = F (τ̄σ).

By (τ, τ̄) above we really mean the term for the ordered pair. Notice that because

Σ∼
Jl(β)(R)
1 has the Baire property, we can understand pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |=

ϕ(τ ) to mean that ϕ(τh) is true in Jl(σ∩ω1)(R), for comeager many generics h such
that pσ ∈ h. We prove the following Los-type assertion.

Claim 45. For a condition p, the terms τ1, ..., τk, and a Σ1 formula φ, the following
are equivalent:

(1) p �Col(ω,ω2) τ1, ..., τk ∈ Ṁ ∧ Ṁ |= φ(τ1, ..., τk),
(2) ∀∗σ pσ �Col(ω,otp(σ)) Jh(σ∩ω1)(R) |= φ(F (τσ1 ), ..., F (τσk )).

Proof. Note that p �Col(ω,ω2) τ ∈ Ṁ if and only if (p, τ ) ∈ Ṁ . The atomic cases
follow easily. We handle negation as follows. Assume φ(τ1, ..., τk) is ¬ψ(τ1, ..., τk),
ψ is Σ1, and the equivalence above holds for ψ(τ1, ..., τk). Assume first that

p �Col(ω,ω2) Ṁ |= φ(τ1, ..., τk). Assume toward a contradiction that there is a
stationary set A0 ⊂ [ω2]

ω such that for σ ∈ A we have

¬pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F (τσ1 ), ..., F (τσk )).
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Thus by refining pσ and pressing down we find a q below p and a stationary subset
A ⊂ A0 such that σ ∈ A implies

qσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= ψ(F (τσ1 ), ..., F (τσk )).

Similarly we get a stationary set B and a condition r below q such that for σ ∈ B
we have

rσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F (τσ1 ), ..., F (τσk )).

We now find an ordinal γ < ω2 above r so that A ∩ [γ]ω and B ∩ [γ]ω are both
stationary in [γ]ω. Let (σξ | ξ < ω1) be a continuous, exhaustive chain in [γ]ω and
let Ā = {ξ | σξ ∈ A} and similarly define B̄. Let GA, GB ⊂ P (ω1)/NS be V -generic
with Ā ∈ GA and B̄ ∈ GB. Let g ⊂ Col(ω, γ) be generic over both V [GA] and
V [GB] with r ∈ g. Thus

Jα(R)
V [GA][g] |= ψ(F ((τ1 � γ)g), ..., F ((τk � γ)g))

and

Jα(R)
V [GB ][g] |= φ(F ((τ1 � γ)g), ..., F ((τk � γ)g)).

By hypothesis there are Σ1 embeddings

π̄A : Jα(R)
V [g] → Jα(R)

V [GA][g]

and

π̄B : Jα(R)
V [g] → Jα(R)

V [GB ][g].

Thus Jα(R)
V [g] satisfies

ψ(F ((τ1 � γ)g), ..., F ((τk � γ)g)) ∧ ¬ψ(F ((τ1 � γ)g), ..., F ((τk � γ)g)),
which is the desired contradiction. The other direction of the negation case follows
similarly.

We now treat the unbounded existential case. For the nontrivial direction sup-
pose for a club of σ ∈ [ω2]

ω that

pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= ∃x φ(x, F (τσ)).

For simplicity we assume there is only one parameter. For a real z, the set

{x | φ(F (x), F (z))},

as interpreted in a level of L(R) beginning a gap, is the projection of the tree of
the Σ1 scale on this set. We let lw(z) denote a witness obtained from the leftmost
branch of this tree. A key point is that there is a Σ1 formula ψ so that ψ(u, z)
holds if and only if u = lw(z). We define a term lw(τ ) as follows. For a condition q
and a pair n,m ∈ ω we put the term (q, (n,m)) (abusing notation) in lw(τ ) if and
only if for a club of σ,

qσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τσ)(n) = m.

We need to see that for a club of σ ∈ [ω2]
ω,

pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τ )σ = lw(τσ).

We will then have

pσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= φ(F ((lw(τ )σ), F (τσ)))
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for each such σ as desired. Assume otherwise. We extract a condition q below p,
integers n,m1,m2, an ordinal γ < ω2 above q and stationary sets A,B ⊂ [γ]ω such
that for σ ∈ A we have

qσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τσ)(n) = m1

and for σ ∈ B we have

qσ �Col(ω,otp(σ)) Jl(σ∩ω1)(R) |= lw(τσ)(n) = m2.

As in the negation case we get generics GA, GB ⊂ P (ω1)/NS and g ⊂ Col(ω, γ)
such that

Jα(R)
V [GA][g] |= lw((τ � γ)g)(n) = m1

and

Jα(R)
V [GB ][g] |= lw((τ � γ)g)(n) = m2.

Using π̄ we get a contradiction. This completes the proof of the claim. �

Now let h ⊂ Col(ω, ω2) be V -generic. In V [h] we form a structure

(M,E) = (Ṁh/=̇h, ∈̇h/=̇h).

An easy argument which uses the fact that the club filter on P ([ω2]
ω) is countably

complete shows that M is wellfounded, and so there is an isomorphism

i : (M,E) → (N,∈),
for some transitive set N . The construction of the function F we have used is such
that for any real r there is a real r̂ obtained from r so that F (r̂) = r and r, r̂ are
Turing equivalent. Thus for any standard term for a real τ , there is a term τ̂ so
that

τ̂h = τ̂h.

It follows that RN = RV [h]. By Claim 45, N satisfies the sentence, asserting that
it is a level of L(R) and thus N = Jα∗(R) in V [h], for some ordinal α∗ (which
would seem to depend on h). We finish the proof of Lemma 44 by showing that
the following are equivalent for a Σ1 formula φ, a condition p ∈ Col(ω, ω2) and a
standard term for a real τ :

(1) p � Ṁ |= φ(τ ),
(2) p � Jα∗(R) |= φ(F (τ )).

Note that Ṁ |= F (τ̂) = τ so J∗
α(R) |= F (i(τ̂)) = i(τ ). Since i(τ̂) = τ we see that

i = F , which gives the equivalence above. The equivalence shows that Jα∗(R)V [h]

is Σ1 generated by its reals, so that α∗ begins a gap in V [h]. �

If h is Col(ω, ω2)-generic over V , then we write α∗(h) for the ordinal given by
Lemma 44. We shall eventually show α∗(h) is independent of h.

Lemma 46. Let g be Col(ω, ω1)-generic over V , and suppose that g ∈ V [h], where
h is Col(ω, ω2)-generic over V . Then there is a Σ2 elementary embedding

π2 : Jα(R)
V [g] → Jα∗(h)(R)

V [h].

Proof. First we consider the case that h = g×k, where k is Col(ω, ωV
2 ) generic over

V [g]. The proof of Lemma 44 generalizes trivially from Col(ω, ω2) to Col(ω, ω1)×
Col(ω, ω2) and shows that the ordinal

α∗ = α∗(h) = α∗(g × k),
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which begins a gap in V [g][k] and satisfies the natural variant of the Los property
recorded in the statement of Lemma 44. We show that Jα(R)

V [g] Σ2 embeds into
Jα∗(R)V [g][k].

Since Jα(R)
V [g] is pointwise Σ1 definable from its reals, it is enough to show that

whenever x is a real in V [g] and ϕ(v) is a Σ2 formula, then

Jα(R)
V [g] |= ϕ[x] ⇔ Jα∗(R)V [g][k] |= ϕ[x].

We show this first for ϕ(v) a Σ1 formula. Suppose Jα∗(R)V [g][k] |= ϕ[x]. Let
x = ρg, where ρ is a standard Col(ω, ω1) term for a real. Let

(p, q) � Jα∗(ġ×k̇)(R) |= ϕ(ρġ),

with (p, q) ∈ g × k. Applying Lemma 44, we have a club C of σ ∈ [ω1 × ω2]
ω such

that, letting σ0 = {ξ | ∃ν〈ξ, ν〉 ∈ σ} and σ1 = {ν | ∃ξ〈ξ, ν〉 ∈ σ}, we have

(p, qσ) � Jl(σ0∩ω1)(R) |= ϕ[(ρσ0)ġ],

where the forcing is Col(ω, σ0∩ω1)×Col(ω, otp(σ1)). Thus the forcing is essentially
Cohen forcing. Note that σ0 is transitive, pσ0 = p, and ρσ0 = ρ∩σ0, for club many
σ. We have by WRP(2)(ω2) a γ < ω2 such that C is club in [ω1× γ]ω, and q ∈ γ<ω.
Now let G be such that g×G is Col(ω, ω1)×P (ω1)/NS-generic over V . (It doesn’t
matter whether G ∈ V [h].) The Los theorem for the generic ultrapower by G gives

V [G] |= (p, q) � Jα(R) |= ϕ[ρġ],

which gives

V [G][g] |= q � Jα(R) |= ϕ[x],

where the forcing is Col(ω, γ), and hence essentially Cohen forcing. Since Σ∼
Jα(R)
1

has the Baire property in V [G][g], we get that

Jα(R)
V [G][g] |= ϕ[x],

and hence

Jα(R)
V [g] |= ϕ[x],

as desired.
The proof just given works equally well for the Π1 formulae ϕ, and so it gives

the desired equivalence for the Σ1 formulae. That in turn gives us a unique Σ1

elementary embedding π2 : Jα(R)
V [g] → Jα∗(R)V [g][k]. We want to show π2 is Σ2

elementary. For that, it suffices to show that the Σ2 formulae about a real x go
down, and since α∗ begins a gap in V [g][k], we may assume the outer quantifier is
witnessed by a real. Let x = ρg = μg×k. We have

Jα∗(R)V [g][k] |= ϕ[ρg, νg×k],

where ν is a canonical term for a real, and ϕ(v) is Π1. Let (p, q) force this. As
before, we get a γ < ω2 such that for club many σ ∈ [ω1 × γ]ω,

(p, qσ) � Jl(σ0∩ω1)(R) |= ϕ[(ρσ0)ġ, (νσ)ġ×k̇].

Again, let G be such that g×G is Col(ω, ω1)×P (ω1)/NS-generic over V . We have

V [G] |= (p, q) � Jα(R) |= ϕ[ρġ, ν ġ×k̇],
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which gives

V [G][g] |= q � Jα(R) |= ϕ[x, ν̂],

where ν̂ is a Col(ω, γ) term obtained from ν and g. Let k0 be Col(ω, γ)-generic over
V [G][g], and let z = νg×k0 . We have

V [G][g][k0] |= Jα(R) |= ϕ[x, z].

But then

V [g][k0] |= Jα(R) |= ϕ[x, z]

because g × k0 is equivalent to a Col(ω, ω1)-generic over V , and we have Iα. Since

Σ∼
Jα(R)
1 has the Baire property in V [g], Lemma 38 gives

V [g] |= Jα(R) |= ∃zϕ[x, z],

as desired.
Thus we have a unique Σ2 elementary

π2 : Jα(R)
V [g] → Jα∗(g×k)(R)

V [g][k].

Let ϕ, x be a witness to the inadmissibility of α in V [g]; that is, ϕ(u, v) is Σ1,
x ∈ R∩ V [g], and α is the least ordinal β such that Jβ(R)

V [g] |= ∀u ∈ Rϕ[x]. Since
π2 is Σ2 elementary, ϕ, x witness the inadmissibility of α∗(g× k) in V [g][k], so that
ϕ, x gives us a “name” for α∗(g × k).

We now show α∗(h) is independent of h. It is enough to show α∗(h1) = α∗(h2)
whenever h1 and h2 are Col(ω, ω2)-generic, and V [h1] = V [h2]. We may re-arrange
hi so that hi = gi × ki, where gi × ki is Col(ω, ω1)× Col(ω, ω2)-generic. Let ϕi, xi

be an inadmissibility witness for α in V [gi]. Since Σ
Jα(R)
1 has the Baire property in

V [gi], we have that in V [g1][g2], both ϕ1, x1 and ϕ2, x2 are inadmissibility witnesses
for α. Let g3 = g1 × g2, and let k3 on Col(ω, ω2) be such that V [g3][k3] = V [h1] =
V [h2]. By what we just showed, both ϕ1, x1 and ϕ2, x2 are inadmissibility witnesses
for α∗(g3 × k3) in V [h1] = V [h2]. It follows that α

∗(h1) = α∗(g3 × k3) = α∗(h2), as
desired.

This finishes the proof of Lemma 46. �

Henceforth we write α∗ for the common value of all α∗(h).

Lemma 47. Let g × G be Col(ω, ω1) × P (ω1)/NS-generic over V , and suppose
g,G ∈ V [h], where h is Col(ω, ω2)-generic over V . Then there is a unique Σ1

elementary

j : Jα(R)
V [G][g] → Jα∗(R)V [h].

Moreover, π2 = j ◦ π.

Proof. In V [h], Jα∗(R) |= AD, and α∗ begins a gap. Moreover, V [h] = V [k], where
k is Col(ω, ωV

2 )-generic over V [G][g]. Thus by Lemma 36, there is a unique γ
beginning a gap in V [G][g] and a unique Σ1 elementary

j : Jγ(R)
V [G][g] → Jα∗(R)V [h].
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It will be enough to show γ = α. (We then get π2 = j ◦ π because the maps are
determined by their restrictions to reals.)

To see γ = α, in V [g] let B be the prewellordering associated to a Σ
Jα(R)
1 norm

on a universal Σ
Jα(R)
1 set of reals. B has length α. In V [h], let C be the set

with the same definition, but over Jα∗(R). Since Σ
Jα∗ (R)
1 has the scale property

in V [h], there are definable-in-V [h] trees T, U projecting to C and its complement.
By homogeneity, T and U are in V . Because π2 exists, T and U project to B and
its complement in V [h]. It follows that

V [g] |= B is ω2-universally Baire.

But G is generic over V [h] for a reasonable forcing, so by the Foreman-Magidor
theorem, Theorem 34, every level of C with a representative in V [G][g] has a rep-
resentative in V [g]. The order type of C ∩ V [G][g] is just γ, and the order type of
B = C ∩ V [g] is α, so γ = α. �

We now consider the case that α is in the range of a generic embedding.

Lemma 48. Suppose πG(α0) = α for some P (ω1)/NS-generic. Then

(1) Jα0
(R) is inadmissible in V and

(2) πG(α0) = α for all P (ω1)/NS generic G.

Proof. Let g be such that g × G is Col(ω1, ω) × P (ω1)/NS-generic. Let h on
Col(ω, ω2) be such that g,G ∈ V [h]. In V [g], let x be a real and ϕ a Σ1 formula
such that

Jα(R) |= ∀y ∈ Rϕ[y, x],

and α is least such that this is true. So ϕ, x witness the inadmissibility of α in V [g].
Because π2 is Σ2 elementary, ϕ and x witness the inadmissiblity of α∗ in V [h]. But
then our Σ1 map j from Lemma 47 shows that ϕ, x define a total function over
Jα(R) in V [G][g], and the map π given by Iα shows that this function has range
cofinal in α. Thus ϕ, x witness the inadmissibilty of α in V [G][g]. The Cohen map is
Σ2, so ϕ, x witness the inadmissibility of α in V [G]. Finally, πG is fully elementary,
and this gives us part (1).

For (2), let ϕ, x witness the inadmissibility of α0 in V . Let g × G be any
Col(ω1, ω)× P (ω1)/NS-generic, with α = πG(α0). Then ϕ, x witnesses inadmissi-
bilty of α in V [G], hence V [G][g], and hence V [g]. If k × H is any other generic,
and ξ = πH(α0), then ϕ, x witness inadmissibility for ξ in V [k]. Since x ∈ V and
Col(ω, ω1) is homogeneous, ξ = α, as desired. �
Lemma 49. Suppose α = πG(α0) for some G. Then Iα+1 holds, and W ∗

α+1 holds
in all V [g], for g on Col(ω, ω1).

Proof. Let ϕ, x witness the inadmissibility of α0 in V . Let g × G be Col(ω1, ω) ×
P (ω1)/NS-generic. Let h on Col(ω, ω2) be such that g,G ∈ V [h]. We have that
ϕ, x witnesses inadmissibility for α in V [g] and for α∗ in V [h]. Working in V [h], we

now obtain a function J on H(ω1) with parameter x such that J codes up Σ
Jα∗ (R)
1

truth. Here we just follow the construction of [22]. Given a countable transitive
set b such that x ∈ b, J(b) is the minimal b-premouse with parameter x, call it M,
such that

Jα∗(R) |= M is ω1-iterable
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and

M |= ψ.

Here ψ roughly asserts that the Σ1 function defined by ϕ, x is defined at all reals of
the form τg, where g is Col(ω, b)-generic over M and τ is a term that is rudimentary
in b.

More precisely, if l ⊂ Col(ω, b) is M-generic, then there is a real z(l, b) which
simply codes the pair (l, b). Thus M[l] is a z(l, b)-mouse. Let σ ∈ M be a term so
that whenever l is such a generic,

{(σl)i | i > 0} = {ρl | ρ ∈ L1(b)}
and (σl)0 = x. We let the sentence ψ assert that whenever l is generic there is a γ
so that M(z(l, b)) � γ is a (φ∗

n, σl)-witness, in the sense referred to in W ∗, where
φ∗
n(v) is the Σ1 formula: there is an ordinal ξ for which ωξ + n exists and

Jξ(R) |= ∀i > 0 φ(vi, v0).

Since in V [h], ϕ, x witnesses inadmissibliity for Jα∗(R), and Jα∗(R) thinks that
every Σ1 truth about a real is captured by an ω1-iterable premouse, we have that
J(b) exists for all b such that x ∈ b. J is not quite a mouse operator in V [h],
because that requires ω1 + 1-iterability. However, ω1-iterability in a model of AD
is enough for comparison, so J(b) is Σ1 definable over Jα∗(R). Letting J0 = J � V ,
we then have in V that J0 is a first order mouse operator on H(ω3), and J = Jh

0 .
It is not hard to see that J0 relativises well, condenses well, and determines itself
on generic extensions. (See [22].)

Our Lemma 47 on the existence of j and the Cohen ultrapower map ψ implies
that J is NS-absolute. Let k×H be Col(ω, ω1)×P (ω1)/NS-generic over V , and both
in V [l], where l is Col(ω, ω2)-generic. Let θ be the Σ1 formula defining J0 � H(ω1)

V

from x over Jα0
(R). Then θ defines J l over Jα∗(R)V [l], because j◦ψ◦πH exists. Thus

θ defines J l � V [H] = JH over Jα(R)
V [H], because j ◦ ψ exists. So πH(J0) ⊆ JH .

So in V , J0 is an (ω3, x)-mouse operator that relativises and condenses well,
determines itself on generic extensions, and is NS-absolute. By Theorem 28, setting

Jn+1 = (Jn)
w,

we have the same properties for Jn, for all n < ω.
This gives W ∗

α0+1 in V , with the witnessing mice being the Jn(b). Going back to
g,G, and h, we also have that W ∗

α+1 holds in V [g], with the witnessing mice being

those of the form Jg
n(b) for b ∈ H(ω1)

V [g]. For details on why these mice suffice
as witnesses, see [22]. The key is that Σn truth over Jα(R) reduces to (Σ1

n)-in-J0
truth by inadmissibility.

We also get Iα+1. Let

π : Jα(R)
V [g] → Jα(R)

V [G][g]

be the Σ1 map given by Iα. It suffices to show π is fully elementary. This is because
of the Jn’s code truth over Jα(R). More precisely, fix n < ω. There is a recursive
function t such that for any Σn formula ϕ and any b in the H(ω1)-cone over x of
V , we have

Jα0
(R)V |= ϕ[b, x] ⇔ Jn(b) |= t(ϕ)[b].
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But then for any b ∈ H(ω1)
V [G],

Jα(R)
V [G] |= ϕ[b, x] ⇔ πG(Jn)(b) |= t(ϕ)[b].

Since Jα+1(R)
V [G] |= AD, the Cohen ultrapower map ψ is fully elementary, and

πG(Jn)
g = Jg×G

n , for any b ∈ H(ω1)
V [G][g],

Jα(R)
V [G][g] |= ϕ[b, x] ⇔ Jg×G

n (b) |= t(ϕ)[b].

Finally, for b ∈ H(ω1)
V [g],

Jα(R)
V [g] |= ϕ[b, x] ⇔ Jg

n |= t(ϕ)[b].

Since Jg
n ⊆ Jg×G

n , this gives us that the inclusion map on the reals is fully elementary
from Jα(R)

V [g] to Jα(R)
V [G][g]. That implies π is fully elementary, and hence

Iα+1. �
We will be done with the inadmissible, uncountable cofinality case when we show:

Lemma 50. Suppose α < πG(α0) for some G. Then Iα+1 holds, and W ∗
α+1 holds

in all V [g], for g on Col(ω, ω1).

Proof. Let g ×G be Col(ω1, ω) × P (ω1)/NS-generic. Let h on Col(ω, ω2) be such
that g,G ∈ V [h]. Let π be given by Iα, π2 by Lemma 46, ψ by the Cohen ultrapower,
and j by Lemma 47. We have that π and j are Σ1 elementary, while ψ and π2 are
Σ2 elementary. Let ϕ, x witness inadmissibility for α in V [g], V [G], and V [G][g],
and for α∗ in V [h].

Just as before, working in V [h], we obtain a function J0 onH(ω1) with parameter

x such that J0 codes up Σ
Jα∗ (R)
1 truth. J0(b) is the least b-premouse with parameter

x satisfying a certain sentence ϕ and being ω1-iterable in Jα∗(R). The difference
now is just that the parameter x may only be in V [g]. Since V [h] is a homogeneous
extension of V [g], we do have in V [g] and V [G][g] (ω2, x)-mouse operators K0,K1

such that J0 = Kh
i . Ki is just the restriction of J0 to the H(ω2) of its model, so

we write J0 for Ki.

Claim. In V [h], there are functions Jn on the H(ω1)-cone over x such that for any
b in this cone,

(a) Jn+1(b) |= “I am Jw
n (b)” and

(b) Jn+1(b) is ω1 iterable in V [h] by a Jn-guided iteration strategy.

Remark. So Jn+1 is Jw
n , except that ω1 + 1 strategies have to be replaced in V [h]

by absolutely definable ω1 strategies.

Proof. We begin with J1, though our method works in general.

Subclaim 1. In V [g], for any b in the H(ω1)-cone over x, Jw
0 (b) exists, and has a

J0-guided ω2-iteration strategy.

Proof. Fix b. We have b in V [G][g]. Because j exists, J0 � V [G][g] has the same
definition over Jα(R) in V [G][g] that J0 has over Jα∗(R) in V [h]. But πG(α0) > α,
and hence

V [G] |= W ∗
α+1,

so that

V [G][g] |= W ∗
α+1,
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by the elementarity of the Cohen ultrapower. Hence in V [G][g] we can find M such
that

(a) M |= “ I am Jw
0 (b)” and

(b) V [G][g] |= “M has a J0-guided ω1-iteration strategy”.

Using condensation for J0 in V [G][g] and the fact that it determines itself on generic
extensions, we see by a standard Lowenheim-Skolem argument that M has a J0-
guided ω1-iteration strategy in V [h]. This fact defines M in V [h] from J0 � V [g]
and b, so M ∈ V [g]. It is easy to see that V [g] |= M = Jw

0 (b) and that M has a
J0-guided ω2-iteration strategy in V [g]. �

Subclaim 2. In V [h], for any b in the H(ω1)-cone over x, there is a b-premouse M
with parameter x such that

(a) M |= “I am Jw
0 (b)” and

(b) V [h] |= “M has a J0-guided ω1-iteration strategy”.

Proof. We go back to V , so that we can use Mouse Reflection.

Let τ be a standard term such that τg = x. Thus τ ∈ V , and τ ⊂ ω × ω1.
Working in V , we can find for any b in the H(ω2)-cone over τ a countably iterable
b-premouse M with parameter τ such that Jw

0 (b) is the canonical re-arrangement of
M[g] as a premouse over 〈b, g〉 with parameter x. (The hierarchy of M is defined
by induction. See [24] or [14] for the details of this method of inverting generic
extensions of mice.) Writing M = I(b), we can summarize this as

I(b)[g] = Jw
0 (b),

for all b in theH(ω2)
V -cone over τ . I is a first order mouse operator with parameter

〈τ, p〉 in V , its sentence being “it is forced in Col(ω, ω1) by p that my canonical
re-arrangement as a premouse over 〈b, g〉 with parameter τg thinks it is Jw

0 (b)”.
(Here p is an appropriately chosen fixed condition.)

By Mouse Reflection, I extends in V to an (ω3, 〈p, τ 〉)-mouse operator, which
we also call I. Now given b in the H(ω1)

V [h]-cone over x, we can find an M as in
Subclaim 2 as follows. Let V [h] = V [g][k], where k is Col(ω, ω2)-generic over V [g],
and let b = σg. Let c be in the domain of I, with τ, σ ∈ c. Then I(c)[g][k] can
be re-arranged as a premouse over 〈c, g, k〉 with parameter x = τg. Let N be this
re-arrangement. It is easy to see

(a) N |= “ I am Jw
0 (〈c, g, 〉)” and

(b) V [g][k] |= “N has a J0-guided ω1-iteration strategy”.

The reason is simply that we can reflect any failure of (a) or (b) into the H(ω1)-
cone over x of V [g], where I does indeed determine Jw

0 by the method whereby we
obtained N .

Since Jw
0 relativises well, we can use N to find a M over b satisfying Subclaim

2.
This gives us the function J1 as required by our claim. Notice also that the proof

has shown that the H(ω1)-cones over x of V [g] and V [G][g] are closed under J1,
and that

J1 = Jw
0

holds in V [g] and V [G][g] as well. This is what we need in order to obtain J2 by
the same method. We get Jw

1 on H(ω1)
V [G][g] using W ∗

α+1 there. The J1-closure
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of V [h] and homogeneity of Col(ω, ω2) give us Jw
1 on H(ω1)

V [g] in V [g]. We get I
in V such that I(b)[g] = Jw

1 (〈, b, g〉). I extends to an (ω3, τ )-operator in V , where
τg = x. Going back to V [h], we can convert I into the desired Jw

1 -like function J2.
We leave any further details to the reader. This proves the Claim.
We can now finish the proof of Lemma 50. Let Jn be the function in V [h] that we

constructed. In V [g], the Jn(b) for b in the H(ω1)-cone over x collectively witness
W ∗

α+1. This is because, as in the proof of Lemma 49, we can reduce the Σn truth

about b in Jα(R)
V [g] to the Σ1 truth in Jn(b). We get Iα+1 because, as a byproduct

of our construction, Jn ∩H(ω1)
V [g] is contained in ((J0)

w,...,w)V [G][g]. The former
captures truth over Jα(R)

V [g], and the latter captures truth over Jα(R)
V [G][g]. This

implies that π is fully elementary, as desired. �

7. The admissible cases

Let us fix g ⊂ Col(ω, ω1) which is V -generic, and a critical ordinal γ in V [g] of
type (3). That is, letting α be the strict sup of the critical ordinals < γ, we have
α < γ. We assume that W ∗

α holds in V [g], and we wish to show that W ∗
γ+1 holds

in V [g]. The analysis of scales in L(R) shows that α begins a Σ1 gap [α, β], and
Jα(R) is admissible. The possibilities are that α = β = γ−1 (the admissible empty
gap), that α < β = γ − 1 (the strong gap), or that α < β = γ (the weak gap). But
for the most part, we do not need to distinguish these three cases here. We also
assume WRP(2)(ω2), and that NS is saturated. Our overall plan is:

Step 1. Working in V [g], we construct a mouse N and iteration strategy Σg which
code up truth at the end of the gap [α, β]. N will be a mouse over some real
parameter z.

Step 2. Letting τg = z, we show that N and Σg yield a mouse Nτ over τ and
an ω2-iteration strategy Σ for Nτ , both in V , via the equations Nτ [g] = N and
Σ = Σg � V .

Step 3. We show that Σ extends to act on H(ω3).

Step 4. We then further extend Σ so that it acts on all trees in the H(ω1) of V [g][h],
where h ⊂ Col(ω, ωV

2 ) is V [g]-generic. At the same time we find versions [αH , βH ]
of our gap [α, β] in V [g][H], whenever H ∈ V [g][h], along with appropriately ele-
mentary embeddings from Jβ(R)

V [g] to JβH (R)V [g][H].

Step 5. We proceed as in the inadmissible case, but using Σ mice with Woodin
cardinals to witness W ∗

γ+1 in V [g]. As before, the proof breaks into cases, according
to whether or not α ∈ ran(πNS).

Steps 1 and 2 follow [22] closely. The only difference here is that we want N to
have ω-Woodin cardinals, so that we can lift the gap [α, β] to V [g][h], for h generic
over Col(ω, ω2), using an R-genericity iteration over V [g][h]. We now proceed to
the details.

Definition 51. Let Γ be the pointclass Σ
Jα(R)
1 . What is called the envelope of Γ,

or ENV(Γ), is the class of all A ⊆ R which are countably captured by Γ in that
there is a real x such that for any countable σ ⊆ R, A ∩ σ is OD<α(σ, x). The
analysis of scales from [23] shows that if α = β or [α, β] is strong, then

ENV(Γ) = Jβ+1(R) ∩ P (R),
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and if [α, β] is weak, then

ENV(Γ) = Jβ(R) ∩ P (R).

If α = β or [α, β] is strong, put

e(Γ) = {A ⊆ R | A is ordinal definable over Jβ(R)}.
If [α, β] is weak, put

e(Γ) = {A ⊆ R | ∃ξ < β (A is ordinal definable over Jξ(R))}.
So

ENV(Γ) =
⋃

z∈R

e(Γ)(z)

is the boldface pointclass associated to e(Γ).

A 0-suitable premouse is a minimal premouse N with one Γ-Woodin, called δN .
Such an N is A-iterable if it has a partial iteration strategy moving the Col(ω, δN )
term relation for A correctly. The reader should see [22] or [24] for full definitions.
We have the following basic result of Woodin.

Theorem 52 (Woodin). For any countable transitive set X, and A such that
A ∈ e(Γ)(z) for some z ∈ X, there is a 0-suitable, A-iterable premouse over X.

No full proof of this key lemma has ever been written. There is part of a proof
in [16], and the paper [24] outlines a proof in the weak gap case.

If [α, β] is weak, we let z0 be a real parameter such that for some finite set F
of ordinals, 〈z0, F 〉 satisfies a nonreflecting Σn type, where n is least such that
ρn(Jβ(R)) = R. We let F0 be the Brouwer-Kleene least such F , and let

Jβ(R) =
⋃

n

Hn

be the decompostion given in [23]. Thus in particular eachHn collapses to a member
of Jβ(R). If [α, β] is not weak, let z0 be a real such that for some Σ1 formula ϕ(v),
we have

Jβ+1(R) |= ϕ[z0] but Jβ(R) �|= ϕ[z0].

Let ρ be a standard Col(ω, ωV
1 ) term for a real such that ρg = z0, and let p0 force

all the properties of ρ we have enumerated so far. For p ∈ Col(ω, ωV
1 ) such that

p0 ⊆ p, let gp(n) = p(n) if n ∈ dom(p), and gp(n) = g(n) otherwise. Let τ be a
term for a real such that τg codes ρg and g in some natural way. It is easy to do
this so that

(a) z0 ≤T τg and
(b) for all p, τg ≡T τgp .

Put z = τg. For any A ∈ e(Γ)(z), put

B(A) = {(y, t) ∈ R× R | y codes a countable, transitive X such that

z ∈ X, and t codes ThNω (X ∪ {X, τNA }),
for some (all) 0-suitable, A-iterable X-premouse N}.

Here τNA is the standard Col(ω, δN )- term capturing A . “Some” is equivalent to
“all” in the definition above because A-iterability yields an approximation to the
comparison process which suffices to determine the theory in question. Note that
B(A) ∈ e(Γ)(z), because e(Γ)(z) is closed under real quantification. By the scale
analysis of [23], we have a self-justifying system A = {Ai | i < ω} such that
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(1) each Ai is in e(Γ)(z),

(2) if α = β or [α, β] is strong, then for each n < ω, ThJβ(R)
n (R) ∈ A,

(3) if [α, β] is weak, then for all n, ThHn
ω (R ∪ {z, F0}) ∈ A, and

(4) for any n, B(〈Ai | i ≤ n〉) ∈ A, where we regard 〈Ai | i ≤ n〉 as a set of
reals via some natural coding.

It is easy to also arrange that there is a fixed term Ȧ such that

(5) for all p ⊇ p0, Ȧgp = Ȧg.

Let X be countable transitive, with z ∈ X. Let Nn be a 0-suitable, 〈Ai | i ≤ n〉-
iterable mouse over X. As in [22] we can simultaneously compare all the Nn to
get a 0-suitable N over X such that N is 〈Ai | i ≤ n〉-iterable for all n. But then
condensation for term relations implies that N has a unique fullness-preserving
(ω1, ω1)-iteration strategy which moves all the term relations τNAi

correctly.8 Put

Q(X) = HullN (X ∪ {X} ∪ {τNA | A ∈ A}).

Condensation for term relations of a self-justifying system implies that Q(X) has
all the properties of N , namely, it is 0-suitable, and has a unique fullness preserv-

ing (ω1, ω1)-iteration strategy which moves all the term relations τ
Q(X)
Ai

correctly.
Moreover, Q(X) is “sound”, in that

Q(X) = HullQ(X)(X ∪ {X} ∪ {τQ(X)
A | A ∈ A}).

Let

N0 = Q(Vω ∪ {z}),

Nk+1 = Q(Nk),

and

N =
⋃

k<ω

Nk.

Put δNk = δNk . We regard N as a premouse over z in the natural way. Note that
because Nk is suitable, and hence Γ-full, no level of Nk+1 projects across o(Nk),
and thus the δk are all Woodin in N .

Lemma 53. There is a unique A-guided strategy for N in V [g].

Proof. As in [22], there is a unique A-guided iteration strategy Σ0 for N0. Let

i : N0 → S0

be an iteration map by Σ0. We can let i act on all of N , giving rise to

i : N → S.

Also put Sm = i(Nm), for all m. We do not yet know that S is even wellfounded,
but in fact

Claim 54. For all m, Sm+1 = Q(Sm).

8See [22]. The strategy chooses the limit over n of branches bn, moving all τNAi
for i ≤ n

correctly.
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Proof. We prove it for m = 0. Let

Wk = ThN1
ω (N |δ ∪ {τN1

A0
, ..., τN1

Ak
}),

where δ = δN0 . Note Wk ∈ N0 because N0 is Γ-full. Let

B = B(〈A0, ..., Ak〉).
Now N0 satisfies the sentence “it is forced in Col(ω, δ) that if y codes N |δ and t

codes Wk, then (y, t) ∈ τN0

B ”. Thus the same sentence is true of i(δ), i(Wk), and

i(τN0

B ) in S0. But i(τ
N0

B ) = τS0

B , and so

ThS1
ω (S|i(δ) ∪ {τS1

A0
, ..., τS1

Ak
}) = i(Wk)

= ThQ(S0)
ω (S|i(δ) ∪ {τQ(S0)

A0
, ..., τ

Q(S0)
Ak

}).
It follows that there is a natural isomorphism between

HullS1
ω (S|i(δ) ∪ {τS1

A0
, ..., τS1

Ak
})

and
HullQ(S0)

ω (S|i(δ) ∪ {τQ(S0)
A0

, ..., τ
Q(S0)
Ak

}).
Moreover, these isomorphisms commute with the inclusion maps on the hulls, be-
cause they are determined by the i(Wk). Finally, S1 and Q(S0) are the unions of
the respective sequences of hulls, as k varies. (In the case of S1, this is because
N1 = Q(N0), and i came from an iteration based on N0.) Thus S1

∼= Q(S0). The
proof for m > 0 is the same. �

But now S1 = Q(S0) has a unique iteration strategy Σ1 for trees above S0.
Letting i : S → T come from an iteration of S1 by this strategy, and Tm = i(Sm),
we get Tm+1 = Q(Tm) for all m ≥ 1 by repeating the proof of the Claim above. We
can then move on to iterating T2 above T1, etc. Clearly, this describes an iteration
strategy for N acting on normal trees.9 �

N is a mouse over τg, but it can be re-arranged as a mouse over τgp whenever
p ⊇ p0. This re-arranged mouse has the same universe and extender sequence; it
just has a different (but Turing equivalent) real distinguished at the bottom. What

is more, we have a fixed term Ṅ such that for all p ⊇ p0, Ṅgp is the re-arrangement
of N as a mouse over τgp . This is because of the symmetry in the construction of

N and, in particular, because Ȧg = Ȧgp for all such p. This enables us to build in
V a premouse Nτ over τ such that Nτ [g] = N . We construct Nτ |α by induction on
α, maintaining that

(Nτ |α)[g] = N |α,
along with the correspondence of projecta and parameters. α is active in Nτ iff it
is active in N , and if so,

ENτ
α = EN

α ∩Nτ |α.
Nτ |(α + 1) ∈ V because by induction, Nτ |α ∈ V , and because EN

α is independent
of g. ENτ

α is an extender over Nτ because g was generic over V , and the forcing
is small. The reader can find all the details of this construction in [24]. Let Σg be
the unique iteration strategy for N given by the lemma. Iterating Nτ is the same
as iterating Nτ [g] = N , because the forcing is small, and thus we can regard Σg as

9In fact our strategy applies to trees of the following form: a stack of normal trees below the
first Woodin, then a stack of normal trees between the first and second Woodin, then a stack
between the second and third, etc.
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a strategy for Nτ . Moreover Σ, which denotes Σg � V , is in V by the symmetry
in our construction of Σg. Since Σg condenses well, Σ condenses well. We have
finished Steps 1 and 2 of the general plan.

We now execute Step 3. Here we use WRP(2)(ω2) in V to extend our ω2-iteration
strategy to an ω3-iteration strategy. In fact, simultaneous stationary reflection for
pairs of subsets of ω2 is enough.

Lemma 55. Let M be a premouse of cardinality ≤ ω1, and let Σ be any ω2-
iteration strategy for M which condenses well. Suppose that whenever S, T ⊆ ω2

are stationary and consist of ordinals of countable cofinality, there is a ν < ω2 such
that S and T are stationary in ν. Then there is a unique ω3-iteration strategy Ω
for M such that

(1) Σ ⊆ Ω and
(2) Ω condenses well.

Proof. We omit the easy proof that there is at most one such Ω. Fix η large. Let
T be an iteration tree on M with lh(T ) < ω3. We say 〈Xα | α < ω2〉 is a T -chain
iff

(a) Xα ≺ Vη, for all α < ω2,
(b) α < β ⇒ Xα � Xβ, and Xλ =

⋃
α<λ Xα for limit λ,

(c) M, T ∈ X0, and
(d) |Xα| = ω1, and Xα ∩ ω2 ∈ ω2, for all α < ω2.

Given a T -chain �X, we let πα : Hα
∼= Xα with Hα transitive, let πα,β = π−1

β ◦ πα,

and let Tα = π−1
α (T ). We say that �X is Σ good iff each Tα is by Σ, and in that

case, we set

bα = Σ(Tα)
for all α < ω2. There is of course no reason that we should have bα ∈ Hα.

Claim 56. Let �X be a Σ good T -chain, and let γ < ω2 with cof(γ) = ω1. Then for
club many α < γ, πα,γ“bα ⊆ bγ .

Proof. We take cases on the cofinality of the length of T . Suppose first cof(lh(T )) =
ω. Then for all sufficiently large α < γ, ran(πα,γ) is cofinal in bγ , and thus applying
condensation to the support-closed subtree of T �

γ bγ determined by ran(πα,γ), we

get that π−1
α,γ“bγ = Σ(Tα) = bα. So the desired club is just a tail below γ. Suppose

cof(lh(T )) = ω1. Then cof(lh(Tξ)) = ω1, for all ξ. Also, for all α < γ, πα,γ“bα is
cofinal in lh(Tγ). Since Tγ has at most one cofinal branch, we get πα,γ“bα ⊆ bγ .
Finally, suppose cof(lh(T )) = ω2. As in case two, cof(lh(Tξ)) = cof(Xξ ∩ ω2), for
all ξ, but now, α < γ ⇒ πα,γ is discontinuous at lh(Tα). Fixing γ with cof(γ) = ω1,
we can find club many α < γ such that ran(πα,γ)∩ bγ is cofinal in sup πα,γ“lh(Tα).
For any such α, condensation for the support-closed subtree of T �

γ bγ determined

by ran(πα,γ), implies that π−1
α,γ“bγ = Σ(Tα) = bα. �

Let �X be a Σ good T -chain. We say �X is coherent if and only if whenever

α < γ < ω2, then πα,γ“bα ⊆ bγ . In this case, we say �X justifies b, where

b =
⋃

α<ω2

bα.
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It is easy to see

Claim 57. T has at most one branch b which is justified by some coherent T -chain.

Proof. If �X and �Y are Σ good T -chains, then for club many α < ω2, Xα ∩ ω2 =

Yα ∩ ω2. Thus for club many α < ω2, T �X
α = T �Y

α and b
�X
α = b

�Y
α . �

So we define

Ω(T ) = b ⇔ b is justified by some coherent T -chain.

Claim 58. If T is by Ω, then every T -chain is Σ good.

Proof. Let T be of minimal length such that the claim is false. Suppose first that

lh(T ) is a limit ordinal. Let �X be a T -chain. If α < γ < ω2, then Tα is the collapse
of a support-closed subtree of Tγ , so since Σ condenses well, we have that Tγ is not
by Σ for all sufficiently large γ < ω2. Using a surjective map f : ω2 → lh(T ) with
f ∈ X0, and a Fodor argument, we can fix ξ < lh(T ) such that for stationary many

α < ω2, π
−1
α (T � ξ) is not by Σ. But �X is a T � ξ-chain, contrary to the minimality

of lh(T ). Thus lh(T ) = λ+1 for some λ. It is clear that λ must be a limit ordinal.

Let b = Ω(T � λ), and let �X be a T -chain. Let �Y be a T � λ-chain which justifies
b. There are club many α < ω2 such that Xα ∩ lh(T ) = Yα ∩ lh(T ), and for such

α, (π
�X
α )−1(b) = (π

�Y
α )−1“b = b

�Y
α . Thus for club many α, T �X

α is by Σ. Condensation
implies this is true for all α. This contradiction completes the proof. �

Claim 59. Σ ⊆ Ω, and Ω condenses well.

Proof. If T is by Σ, then in any T -chain, we have Tα = T for all α < ω2, so every
T -chain justifies Σ(T ). For condensation, suppose Ω(T ) = b, U�c is the collapse
of a support-closed subtree of T �b, and Ω(U) = d where d �= c. It is easy to see

that there is a single �X, with T ,U , b, c, d ∈ X0, which justifies both b and d. But
this gives a failure of condensation for Σ. �

Claim 60. Suppose T is by Ω, and lh(T ) < ω3; then there is a b such that Ω(T ) = b.

Proof. Fix any ξ < lh(T ) and any T -chain �X. Since �X is Σ good, we have bα =
Σ(Tα) for α < ω2. We claim that exactly one of the following holds:

(1) for ω-club many α < ω2, π
−1
α (ξ) ∈ bα,

(2) for ω-club many α < ω2, π
−1
α (ξ) �∈ bα.

It is clear that both cannot hold. Suppose both fail. Let S be the stationary set of
α of cofinality ω where ξ ∈ ran(πα) and (1) fails, and T be the stationary set of α
of cofinality ω where (2) fails. By our stationary reflection hypothesis, we can fix
γ of cofinality ω1 such that both S and T are stationary in γ. Note ξ ∈ ran(πγ).
If π−1

γ (ξ) ∈ bγ , then by the first claim, π−1
α (ξ) ∈ bα for club-in-γ many α, so T

was not stationary in α, a contradiction. Similarly, if π−1
γ (ξ) �∈ bγ , then the first

claim implies S is not stationary in γ, a contradiction. So at least one of (1) and
(2) holds. It also implies that the ω-clubs of (1) and (2) can be taken to be fully
club in ω2. Define b by:

ξ ∈ b ⇔ for club many α < ω2, π
−1
α (ξ) ∈ bα.

Taking a diagonal intersection, we can find a club C ⊆ ω2 such that for α ∈ C,
πα“bα ⊆ b. But then 〈Xα | α ∈ C〉 is a coherent T -chain which justifies b. �
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This completes the proof of Lemma 55. �

Applying Lemma 55, let us use Σ to denote the unique ω3-iteration strategy for
Nτ which condenses well and extends Σg � V . Proceeding to Step 4, we need to
further extend Σ so that it acts on all trees in H(ω1)

V [g][h], whenever h is V [g]-
generic over some poset in H(ω2)

V [g]. These extensions of Σ will be mutually
consistent. At the same time, we will be showing that the gap [α, β] of V [g] has
counterparts in every V [g][h]. The following little lemma will be useful.

Lemma 61. Let Γ be an iteration strategy for S which condenses well. Let π : R →
S be sufficiently elementary that the pullback strategy Γπ for R exists; then Γπ also
condenses well.

Proof. Let T be a tree according to Γπ, and U a support-closed subtree of T
corresponding to those MT

α such that α ∈ X, and let Ū be the collapse of U . It is
easy to see that the lifted tree πŪ is the collapse of the support-closed subtree of
πT corresponding to those MπT

α such that α ∈ X. Since Γ condenses well, πŪ is
according to Γ, and hence Ū is according to Γπ. �

We need to use hybrid strategy mice. Suppose Ω is an iteration strategy for
some structure M , and Ω condenses well. Let A be transitive, with M ∈ A. We
obtain a hybrid Ω-premouse by adding extenders with critical points above A to a
coherent sequence we are building, and at the same time closing the model we are
building under Ω and giving it a predicate for Ω. The construction can only go on
as long as all (nondropping) iteration trees according to Ω we construct are in the
domain of Ω. (M may or may not be a fine-structural premouse, but in any case, it
is convenient to only close under Ω on nondropping trees.) We refer the reader to
[22] for a brief discussion of such Ω-hybrids, and to [16] for a more thorough one.

Definition 62. Let Ω be an |A|+-iteration strategy for M which condenses well,
where A is transitive and M ∈ A. Then PΩ

n (A)� is the minimal |A|+-iterable hybrid
Ω- mouse over A which is active and satisfies “there are n-Woodin cardinals”.

We note that the iterations referred to here all leave A, and hence M , fixed. It
is part of iterability that they must move Ω to itself. One can hope to construct
such iterable hybrid mice in a Kc construction, because Ω condenses well, and
hence Ω will condense to itself under realizing maps. The iterability demand we
have made for PΩ

n (A)� in the definition above is the minimal one which guarantees
uniqueness, granted that H(|A|+) is closed under PΩ

n−1-sharps. We shall never

consider a putative PΩ
n (A)-sharp unless we already know H(|A|+) is closed under

PΩ
n−1-sharps. In practice, we often have more iterability than the minimal demand.

Our core-model-induction proof that H(ω3) of V is closed under the M �
n operators

generalizes routinely to hybrid mouse operators, and gives:

Lemma 63. Assume NS is saturated, and WRP(2)(ω2) holds. Let S ∈ H(ω1), and
let Ω be an ω3-iteration strategy for S which condenses well. Then for all transitive
A ∈ H(ω3) such that S ∈ A, and all n < ω, PΩ

n (A)� exists and is ω3-iterable.

This is proved exactly as was Theorem 28, so we omit the details.
Lemma 63 is the place where core model theory gives us new mice. We shall

eventually apply it in the case that α ∈ ran(πG) for some NS-generic G. In that
case, we can take our real z0 to be in V , and Nτ to be in V , and countable there.
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(We don’t actually need τ at all; N could be a z0-premouse.) We shall then apply
Lemma 63 with S = N and Ω = Σ.

Before we take cases on whether α ∈ ran(πG), however, we do some further
preliminary work related to Iγ .

Lemma 64. For all A ∈ H(ω3), P
Σ
0 (A)� exists and is ω3-iterable.

Proof. We show first that PΣ
0 (A)� exists for all such A ∈ H(ω2), and then extend

this to A ∈ H(ω3) using simultaneous reflection. Let G ⊂ P (ω1)/NS be V -generic
and let

i : V → M ⊆ V [G]

be the generic embedding. Since Nτ ∈ H(ω2)
V , we have Nτ ∈ M , and i � Nτ ∈ M .

So inside M , we can form the (i � Nτ )-pullback of i(Σ), which we denote by i(Σ)i.
From the point of view of M , i(Σ)i is an ω3-iteration strategy for Nτ , and by
Lemma 61, it condenses well in M .

Claim 65. i(Σ)i agrees with Σ on all trees in the intersection of the two domains.

Proof. We first consider trees in H(ω2)
V , all of which are in both domains. Let

T ∈ H(ω2)
V be a tree according to Σ. Note that i � Nτ ∈ M . In M the copied

tree iT on i(Nτ ) is satisfied to be the collapse of a support closed subtree i(T ).
Since i(Σ) condenses well in M , iT is according to i(Σ). Hence T is according to
the pullback i(Σ)i. Now let U be a tree in V of size ωV

2 in V which is according to
both Σ and i(Σ)i, and is of limit length. Let

b = i(Σ)i(U),
c = Σ(U)

and

b �= c.

Note that cf(lh(U)) must be countable in V [G]. In V , we can write U =
⋃

α<ω2
Uα,

where this is an increasing continuous chain of support-closed subtrees, each of size
ω1. Going to V [G], where cf(lh(U)) is countable, we see that

b ∩ Uα is cofinal in Uα

and

c ∩ Uα is cofinal in Uα,

for all sufficiently large α, so we may assume all α. Let Ūα denote the collapse of
Uα, b̄α the collapse of b∩Uα, and c̄α the collapse of c∩Uα. Fix α such that b̄α �= c̄α.
Now

c̄α = Σ(Ūα)

because Σ condenses well in V . On the other hand,

b̄α = i(Σ)i(Ūα),

because i(Σ)i condenses well in M . Since Σ and i(Σ)i must agree at Ūα by the first
part, we are done. �

Now fix a transitive A ∈ H(ω2) such that Nτ ∈ A. Let LΣ[A] be the minimal
model of height ω3 which has A as a member and is closed under Σ, and is expanded

by a predicate for Σ. In M , we can form Li(Σ)i [A] in parallel fashion. By Claim 65,
these two models are the same. So LΣ[A] ∈ M . But i(NS) is saturated in M , so
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by the same argument which shows that the existence of a saturated ideal implies
that 0� exists, we get some P ∈ M such that

M |= P = PΣ
0 (A)�,

with PΣ
0 (A)� being a first order property, combined with linear iterability by the

last (and only) extender in a way that moves Σ to itself, for iterations of length
< ωM

3 = ωV
3 . But now let h be V -generic for Col(ω, ωV

2 ), and such that G ∈ V [h].
The required iterability of P is upward absolute, that is,

V [h] |= P is ωV
3 iterable,

so since ωV
3 is still uncountable in V [h],

V [h] |= P = PΣ
0 (A)�.

By the homogeneity of Col(ω, ω2), P ∈ V , and

V |= P = PΣ
0 (A)�,

and we are done in the case A ∈ H(ω2). We now use WRP(2)(ω2), via hybrid mouse

reflection at ω2, to show that PΣ
0 (A)� exists for all transitive A ∈ H(ω3) such that

Nτ ∈ A. Without loss of generality, let us assume A ⊆ ω2. Let φ be a formula in
the language of set theory together with a predicate symbol Σ̇ and constant symbol
Ȧ, and let �α ∈ ω<ω

2 . For σ ≺ H(ω2) countable, let

πσ : Mσ → Hω2

be the transitive collapse, and Aσ = π−1
σ (Aσ), Nσ = π−1

σ (Nτ ), and �ασ = π−1
σ (�α).

Note that for such σ, the pullback strategy Σπσ is a full ω3 iteration strategy for
Nσ, and it condenses well. Using our saturated ideal, we then have that

PΣπσ

0 (Aσ)
� exists

and is ω3 iterable. We put

(φ, �α) ∈ PΣ
0 (A)� ⇔ for club many σ ∈ Pω1

(Hω2
)

(φ, �ασ) ∈ PΣπσ

0 (Aσ)
�.

(Here we identify the structure PΣ
0 (A)� with its theory with parameters from ω2.)

In order to see that this definition works, we must show that every (φ, �α) is decided
on a club. So suppose neither (φ, �α) nor (¬φ, �α) is in PΣ

0 (A)� according to the
definition above. As usual, we find a transitive X ≺ Hω2

with |X| = ω1 such that
both sets are stationary in Pω1

(X). Without loss of generality, assume �α,Nτ ∈ X,
and

(φ, �α) ∈ PΣ
0 (A ∩X)�.

It is then easy to see that for club many σ ∈ Pω1
(X), (φ, �ασ) ∈ PΣπσ

0 (Aσ)
�. That is

because for club many σ ≺ X, σ = Z ∩X for some Z ≺ Vη with PΣ
0 (A ∩X)� ∈ Z.

Letting π ⊇ πσ be the collapse of Z, we get that

π−1(PΣ
0 (A ∩X)�) = PΣπσ

0 (Aσ)
�.

To see this, note π−1(Σ) ⊆ Σπσ by our argument in the first part of the proof of
Lemma 64. So the strategy predicate in π−1(PΣ

0 (A∩X)�) denotes Σπσ . Moreover,
iterates S of π−1(PΣ

0 (A ∩ X)�) embed into iterates S∗ of PΣ
0 (A ∩ X)�, and the

strategy predicate of S∗ denotes a fragment of Σ, so the strategy predicate of S
denotes a fragment of Σπσ . So we have shown (φ, �α) ∈ PΣ

0 (A)� or (¬φ, �α) ∈ PΣ
0 (A)�.

This easily gives that our PΣ
0 (A)� has the first order properties required of PΣ

0 (A)�.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINACY FROM STRONG REFLECTION 4483

We must see that its strategy predicate denotes Σ and that linear iterates of it
move Σ correctly. Let I be a linear iteration of length < ω3 of P , with last model
Q such that Σ̇Q �⊆ Σ. We can find

π : H → Vη

such that M is countable transitive, and everything relevant is in ran(π). Because
ran(π) ∩ ω2 meets the clubs definable over Vη from elements of ran(π), we get

π−1(P ) = PΣπ

0 (π−1(A))�.

Also, π−1(Σ) = Σπ ∩ H, so Σ̇π−1(N) �⊆ Σπ. This contradicts the fact that linear
iterations of PΣπ

0 (π−1(A))� do move Σπ to itself, by definition. �

We shall now use genericity iterations of Nτ to lift Jβ(R)
V [g] and Σg to V [g][h],

for any h generic over V [g] for a poset in H(ω2)
V [g]. To this end, recall our self-

justifying system A = {Ai | i < ω} in V [g]. For A ∈ A and δ a Woodin cardinal of
N , we have the Col(ω, δ)-term τNA,δ whose images in Σg iterations always capture

A. Since N = Nτ [g], we have τNA,δ = ρg for some Col(ω, ωV
1 )-term ρ. Let σA,δ be

the canonical Col(ω, ωV
1 )× Col(ω, δ)-term such that for all generics k × l,

(σA,δ)k×l = (ρk)l.

Thus

(σA,δ)g×l = (τNA,δ)l,

for l being Col(ω, δ) generic over Nτ [g].

Lemma 66. Let h ⊂ P be V [g]-generic where P ∈ (H(ωV
3 ))V [g]. Then in V [g][h]

there are

(1) sets A∗
i ⊆ R such that

(HCV [g],∈, Ai)i<ω ≺ (HCV [g][h],∈, A∗
i )i<ω,

(2) an ordinal βh and embedding

π : Jβ(R)
V [g] → Jβh(R)V [g][h]

such that π is fully elementary if α = β or [α, β] is strong, and π is Σn

elementary for n least such that ρn(Jβ(R)
V [g]) = R otherwise, and

(3) a unique ωV
3 -iteration strategy Σh ∈ V [g][h] for N which extends Σg ∪ Σ

and condenses well.

Proof. We begin with (1). A∗
i comes from interpreting the images of τNτ

Ai
under

genericity iterations. Note first

Claim 67. In V , let M ∈ H(ω3) be any nondropping Σ iterate of Nτ , and let
k < ω. Let x ∈ R ∩ V [g][h]; then there is (in V ) a Σ iteration map i : M → P with
crit(i) > δMk such that for any Col(ω, δMk )-generic l over P such that l ∈ V [g][h]
and g, h ∈ P [l], we have that x ∈ P [l][f ], for some f ∈ V [g][h] such that f is
Col(ω, δPk+1) -generic over P .
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Proof. Let x = σg�h. Working in V , we use the standard genericity iteration for
the ωV

2 -generator version of the extended algebra of M at δMk+1 to make σ generic.

We get in V an i : M → P with crit(i) > δMk such that for any Col(ω, δMk )-generic l
over P , there is f as in our claim with σ ∈ P [l][f ]. So if g, h ∈ P [l], then x ∈ P [l][f ].
The important thing to note is that the genericity iteration yielding i terminates.
This follows from the fact that PΣ(C)� exists, where C ∈ H(ω3) codes up σ and
the iteration from Nτ to M . �

Claim 68. Let i : Nτ → P and j : Nτ → Q be nondropping Σ iterations of Nτ (in
V ), and let δ and μ be Woodin cardinals of Nτ . Let A ∈ A be in our self-justifying
system from V [g]. Let x ∈ RV [g][h] be such that

x ∈ P [g][l0] ∩Q[g][l1],

where l0, l1 are generic over P [g], Q[g] for the collapses of i(δ) and j(μ), respectively.
Then

x ∈ i(σA,δ)g×l0 ⇔ x ∈ j(σA,μ)g×l1 .

Proof. If not, we have (p, q) ∈ g � h such that

(p, q) � φ(Ňτ , Σ̌),

where φ in the language for forcing over V expresses the failure of our claim in
V [g][h]. Here φ also involves check-names for σA,δ and σA,μ, which we have sup-
pressed. In V , let

π : H → Vη,

where H is transitive and of size ω1, ω1 ∈ H, and everything relevant is in ran(π).
We can find

h̄ ∈ V [g]

so that
g � h̄ is Col(ω, ω1) � π

−1(Ṗ)-generic over H,

and π−1(q) ∈ h̄. Note that by condensation for Σ,

π−1(Σ) ⊆ Σ.

But then, the fact that H[g][h̄] |= φ[Nτ , π
−1(Σ)] yields a Σg iteration of N which

fails to move one of the term relations for A correctly. This is a contradiction. �

Motivated by these claims, working in V [g][h] we put for x ∈ R and A ∈ A,

x ∈ Ah ⇔ ∃i∃δ∃l(i : Nτ → P is a Σ-iteration and

l is P [g]-generic and x ∈ i(σA,δ)g×l).

It is easy to see that
Ah ∩ V [g] = A,

because the iteration given by Claim 67 can be taken in H(ω2)
V in this case, and

such iterations correspond to iterations by Σg, which moves τNA,δ correctly. Note A
is closed under real quantification. Fixing i, we have a j such that

V [g] |= ∀�x ∈ R<ω(Aj(�x) ⇔ ∃yAi(�x, y)).

But this fact is coded into the first order theory over Nτ of the term relations
σAi,δ and σAj ,μ. More precisely, given δ < μ Woodins of Nτ , there is a p ∈ g
which forces over Nτ the statement “whenever k is Nτ [ġ]-generic over Col(ω, δ) and
�x ∈ Nτ [ġ][k], then �x ∈ (σAj ,δ)ġ×k if and only if 1 forces in Col(ω, μ) over Nτ [ġ][k]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINACY FROM STRONG REFLECTION 4485

that there is a y such that (�x, y) ∈ (σAi,μ)ġ×t, where t is the re-arrangement of

k× Ġ”. These first order facts are preserved by our genericity iterations of Nτ , and
those are sufficiently numerous by Claim 67, and coherent in how they move the
σA,ν by Claim 68, so that we get

V [g][h] |= ∀�x ∈ R<ω(Ah
j (�x) ⇔ ∃yAh

i (�x, y)).

We leave any further calculation here to the reader.10 Also, for any i there is a j
such that

V [g] |= ∀�x(Ai(�x) ⇔ ¬Aj(�x)).

Fixing such i, j, we then have

V [g][h] |= ∀�x(Ah
i (�x) ⇔ ¬Ah

j (�x)).

Generalizing slightly, we get that for any formula φ in the language of our two
structures, there is a j = jφ such that for all �x in V [g],

((HCV [g],∈, Ai)i<ω |= φ[�x]) ⇔ Aj(�x),

and for all �x in V [g][h],

((HCV [g][h],∈, Ah
i )i<ω |= φ[�x]) ⇔ A∗

j (�x).

Since Aj = Ah
j ∩ V [g], we are done with part (1). Part (2) of the theorem follows

easily from part (1) and from the fact that the Ai code the appropriate fragments
of the theory of Jβ(R). It is routine then to use the Ah

i to construct a structure over

R ∩ V [g][h] into which Jβ(R)
V [g] embeds with the required degree of elementarity.

One need only show that the structure over R ∩ V [g][h] one gets is well-founded.
The proof of this is a reflection argument very similar to the proof of Lemma 66,
so we omit it. We let βh be such that ωβh is the height of this structure.

Finally, we turn to (3). By part (2), βh ends a gap [αh, βh] in V [g][h], and the
Ah

i constitute a self-justifying system which seals this gap. We claim that the Ah
i

guide an iteration strategy Σh for Nτ , or equivalently for N = Nτ [g], and that
Σg ∪ Σ ⊆ Σg,h. This is again a simple reflection argument along the lines of the
proof of Lemma 66, and so again, we omit it. Being guided by a self-justifying
system, Σh condenses well. �

Remark 69. An earlier version of this paper, posted on the first author’s webpage,
had at this point an argument purporting to show that the pullback strategy i(Σ)i

used in the proof of Lemma 64 codes the same sort of gap in the L(R) of Ult(V,G)
that ΣG does in V [g][G]. Trevor Wilson found a serious gap in this argument,
namely, its assumption that the theory coded into i(Σ)i describes a well-founded
model. Fortunately, we don’t need this argument.

Remark 70. We eventually get βG = β, but only after we have shown that W ∗
γ+1

holds in V [g]. That is because the Foreman-Magidor argument requires a univer-
sally Baire prewellorder of length β in V [g].

Corollary 71. Let G ⊂ (P (ω1)/NS)V be generic over V [g]. Then

V [g][G] |= ∀A ∈ H(ω1) ∀n (PΣG

n (A)� exists and is ω1-iterable).

10See [21] for a similar argument. It was to make this argument possible that we moved to an
N with ω-Woodins, rather than just one.
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Proof. Suppose first that α ∈ ranπG. We may then suppose that Nτ = N is in
V and is countable there. We can then repeat the inductive proof of Theorem 28,
showing that H(ω3)

V is closed under the PΣ
n operator, for all n. This easily yields

the corollary.
Suppose next that α /∈ ran(πG), and let α0 be least such that α < πG(α0).

As in the inadmissible case, α0 begins a gap in V . Thus πG(α0) begins a gap in
Ult(V,G), so βG < π(α0). It follows that in Ult(V,G), JβG+ω(R) |= AD. Standard
results on the existence of iterable models with Woodin cardinal under determinacy

imply that JβG+ω(R)
V [G] |= ∀A ∈ H(ω1)∀n (PΣG

n (A)� exists and is ω1-iterable).

(See [21, theorem 10.1].) But then the same is true in JβG+ω(R)
V [G][g], by the

elementarity of the Cohen ultrapower. �

Now let h be Col(ω, ωV
2 )-generic over V [g], and G ∈ V [g][h] be NS-generic over

V [g]. Note that the extension from V [g][G] to V [g][h] is by a partial order which,
in V [g][G], is of size ω1 and collapses ω1. So V [g][g]-to-V [g][h] is a homogeneous

extension. We shall show the mice PΣG

n (A)� given by Corollary 71 are definable
from A in V [g][h], thus in V [g] when A ∈ V [g]. Definability comes from lifting
their strategies to V [g][h], and that comes from lifting the operators themselves
to V [g][h]. To do that, we need to use simultaneous reflection in V , so we must
consider the PΣ

n -sharp operators on H(ω3)
V . The following lemma does the job.

Lemma 72. For all n < ω,

(1) V |= for all transitive A ∈ H(ω3) such that Nτ ∈ A, PΣ
n (A)� exists and is

ω3-iterable,
(2) if A ∈ H(ω3)

V and P is such that V |= “P = PΣ
n (A)� is ω3-iterable”, then

V [g][h] |= “P = PΣh

n (A)� is ω1-iterable”, and

(3) V [g][h] |= for all countable transitive A such that N ∈ A, PΣh

n (A) exists
and is ω1-iterable.

Proof. By induction on n. We have already proved (1) when n = 0. Part (2) is
trivial in this case, since the iterations of P are all linear iterations by its unique
extender, and hence are all in V . For part (3), Note that the PΣ

0 -sharp operator
determines itself on V [g][h]. More precisely, the PΣ

0 -sharp operator on H(ω3)
V

determines the PΣh

0 -sharp operator on H(ω1)
V [g][h]. Let A be countable transitive

in V [g][h], and say A = ρg×h. Let B ∈ V be the transitive closure of {ρ,Nτ}. We
have an ωV

3 -iterable P = PΣ
0 (B)� in V . But then P [g× h] exists in V [g][h], and we

can obtain PΣh

0 (A)� from it. This is because the determination of Σh from Σ we
gave (via R-genericity iterations which create a self-justifying system guiding Σh) is
sufficiently local that if M |= ZFC, Σ∩M ∈ M and g, h ∈ M , then σh∩M ∈ M and

is uniformly-in-M definable over M from Σ ∩M, g, and h. Iterations of PΣh

0 (A)�

correspond to iterations of P as in (2). The latter stretch Σ into Σ, so the former
stretch Σh into Σh.

Now suppose (1) through (3) hold for n = k. We consider (1) for n = k+1. We
first consider the case A ∈ H(ω2)

V . In V [g], let B be the first admissible set over
{A, g}, so that N ∈ B. By Corollary 71 we have P in V [g][G] such that

V [g][G] |= P = PΣG

k+1(B)�,
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in the sense that P has the first order properties and is ω
V [g][G]
1 -iterable via a

strategy which moves ΣG to itself. We claim that

V [g][h] |= P = PΣh

k+1(B)�,

in the sense that P is ω
V [g][h]
1 -iterable in V [g][h] via a strategy which moves Σh to

itself. The iteration strategy for P in V [g][h] is the one guided by the Q-structures
provided by (3) for n = k. Let Γ be this strategy, and suppose Γ fails in V [g][h].

Let Oh be the PΣh

k -sharp operator of V [g][h], and let O = Oh � V [g][G]. So O
is defined on A ∈ H(ω2)

V [g][G] with N ∈ A. We have that O ∈ V [g][G], because
the extension to V [g][h] is homogeneous, and Oh is definable in V [g][h] from Σ.
Moreover, O determines the full Oh in V [g][h] via the process we have described.
So Γ is definable in V [g][h] from O, and

V [g][G] |= “it is forced that the strategy for P determined by O fails”.

From the point of view of V [g][G], the forcing in question is just Col(ω, ω1). But
now, working in V [g][G], let

π : S → Vη,

where S is countable transitive, with everything relevant in its range. Let l be S-
generic for the collapse of ωS

1 , with l ∈ V [g][G]. It is then easy to see that π−1(O)

is contained in the PΣG

k -sharp operator of V [g][G], and what it determines on S[l]

is also contained in the PΣG

k -sharp operator of V [g][G]. Since P did have a strategy
in V [g][G] guided by this operator, we have a contradiction, proving our claim.

Now we can invert the extension leading from A to B, getting a Σh-premouse Q
over A such that

P = canonical re-arrangement of Q[g] as a premouse over B.

By the homogeneity of the forcing and the definablity of P in V [g][h], we get that
inductively that all levels of Q are in V , and that all trees to which Σh is applied
in such levels are in V . Thus Q is a Σ premouse in V . The iteration strategy for
P in V [g][h] induces a strategy for Q in V . This strategy is in V by homogeneity,
and it witnesses

Q = PΣ
k+1(A)�

in V , and also that Q is ω3-iterable in V . We now use simultaneous reflection to
extend the PΣ

k+1-sharp operator to H(ω3) in V , just as we did in the n = 0 case.
For A ⊆ ω2, the key definition is

(φ, �α) ∈ PΣ
k+1(A)� ⇔ for club many σ ∈ Pω1

(Hω2
)

(φ, �ασ) ∈ PΣπσ

k+1 (Aσ)
�.

Here we use Lemma 49 to see that for each such σ ∈ Pω1
(ω2), P

Σπσ

k+1 (Aσ)
� exists

and is ω3-iterable. Just as in the n = 0 case, we get that everything is decided on
a club, so that the definition yields a structure with the first order properties of
PΣ
k+1(A)�. An argument parallel to that in the n = 0 case shows that this structure

interprets Σ̇ as Σ, and that it is ω3-iterable in a way that moves Σ to itself. Here
one uses the corresponding properties of PΣπσ

k+1 (Aσ)
�, and the fact that Σ collapses

into its pullbacks under Skolem hulls. This finishes the proof of (1) at k + 1. We
leave the straightforward proofs of (2) and (3) at k + 1 to the reader. �

We have finally done what we set out to do in this section.
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Lemma 73. The following holds in V [g]. For all transitive A ∈ H(ω1) such that
N ∈ A, and all n < ω, PΣg

n (A)� exists and is ω1-iterable. Hence W ∗
γ+1 holds in

V [g].

Proof. This follows at once from (3) of Lemma 72, and the homogeneity of Col(ω, ω1).
Every set in Jγ(R)

V [g] is (boldface) projective in Σg. So PΣg

n (A)� are the desired
coarse capturing mice. �
Lemma 74. Iγ+1 holds.

Proof. We have shown that the PΣG

n -sharp operator of V [g][G], when restricted to

HCV [g], is just the PΣg

n -sharp operator of V [g]. Projective-in-Σ truth is coded into
these operators, so we get

(HCV [g],∈,Σg) ≺ (HCV [g][G],∈,ΣG).

But Σg codes truth at the bottom of the Levy hierarchy over Jγ(R)
V [g], and ΣG

codes truth at the bottom of the Levy hierarchy over JγG(R)V [g][G], where γG = βG

if our gap was weak, and γG = βG + 1 otherwise. (Truth is coded via R-genericity
iterations which determine self-justifying systems at the end of these gaps, as in
our argument.) So we get from the line displayed above an embedding

π : Jγ+1(R)
V [g] → JγG+1(R)

V [g][G],

which is Σ1 elementary. But in V [g] we have an ω1-Universally Baire prewellorder
of length γ, so we can use the Foreman-Magidor argument to show γ = γG, and
π = identity. �

Repeating the relevant arguments ω times gives W ∗
γ+ω in V [g] as well as Iγ+ω.

8. Concluding remarks

Like many of the well-known consequences of MM(c), our hypotheses follow from
the Strong Reflection Principle of Todorcevic, denoted SRP(ω2), which asserts that
for every projective stationary subset S of [ω2]

ω there is an ordinal δ < ω2 so

that S ∩ [δ]ω contains a club in [δ]ω. Thus, our main theorem gives ADL(R) from
SRP(ω2) as well. While this represents the best known lower bound for the strength
of SRP(ω2), and even MM(c), these principles are almost certainly much stronger.11

Moreover, in a precise sense, our arguments cannot take us much farther. In section
9.5 of [25] Woodin defines principles SRP∗(ω2) and WRP∗

(2)(ω2) and shows that the

latter is a consequence of the former if NS is saturated (see Lemma 9.93 of [25]).
SRP∗(ω2) asserts the existence of a normal fine ideal I ⊂ P ([ω2]

ω) with the following
two properties: (1) For every T ∈ P (ω1) \NS the set

ST = {σ ∈ [ω2]
ω | σ ∩ ω1 ∈ T}

is I-positive, and (2) for every S ⊂ [ω2]
ω which satisfies S ∩ ST /∈ I for every

T ∈ P (ω1) \ NS, there is γ < ω2 such that S ∩ [γ]ω contains a club in [γ]ω.
WRP∗

(2)(ω2) asserts the existence of a normal fine ideal I with property (1) above

so that any pair S, T /∈ I simultaneously reflects to stationary sets in some [γ]ω.
Woodin obtains SRP ∗(ω2) together with the saturation of NS in a Pmax extension
of a determinacy model whose existence is equiconsistent with ω2-Woodin cardinals.

11They can be obtained via forcing from a supercompact cardinal (see [4]) or from ADR + Θ
regular (see 10.88 of [25]).
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Theorem 75 (Woodin; 9.102 of [25]). The following are equiconsistent.

(1) F ∩L(F,R) is an ultrafilter where F is the club filter on [R]ω and AD holds
in the model L(F,R).

(2) There exists a set of Woodin cardinals of order type ω2.

Moreover, if G is Pmax generic over L(F,R) as in (1), then

L(F,R)[G] |= SRP∗(ω2) and NS saturated .

Woodin remarks in 9.98 of [25] that his proof of Theorem 13 also proves PD from
NS saturated and WRP∗

(2)(ω2). The same is true of our argument.

Corollary 76. Assume NS saturated, WRP∗
(2)(ω2) holds, and 2ω ≤ ω2. Then

L(R) |= AD.

Proof. This amounts to checking that WRP∗
(2)(ω2) can serve in place of WRP(2)(ω2)

in every H(ω2) to H(ω3) lifting argument. For example in Lemma 18 we would
show that the sets St are measured by the filter dual to I (as opposed to the club
filter). One therefore gets 2ω1 = ω2 as in Lemma 8, and the rest of the proof is the
same as in the proof of the main theorem. �

Very likely the 2ω ≤ ω2 hypothesis can be dropped, although we haven’t thought
this through.12 Thus the consistency strength of NS saturated together with
WRP∗

(2)(ω2) and 2ω ≤ ω2 is somewhere in the interval,

(ω Woodins, ω2 Woodins],

and we have reason to believe that the following conjecture is true.

Conjecture 77. The following are equiconsistent:

(1) There exists a set of Woodin cardinals of order type ω2.
(2) NS is saturated and WRP∗

(2)(ω2) holds.

(3) NS is saturated and SRP∗(ω2) holds.

The first step is to prove that K(R) |= AD. We leave this for another time.
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